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ABSTRACT 
A major problem in task-oriented conversational agents is the 
lack of support for the repair of conversational breakdowns. 
Prior studies have shown that current repair strategies for these 
kinds of errors are often ineffective due to: (1) the lack of 
transparency about the state of the system’s understanding of 
the user’s utterance; and (2) the system’s limited capabilities to 
understand the user’s verbal attempts to repair natural language 
understanding errors. This paper introduces SOVITE, a new 
multi-modal (speech plus direct manipulation) interface that 
helps users discover, identify the causes of, and recover from 
conversational breakdowns using the resources of existing 
mobile app GUIs for grounding. SOVITE displays the system’s 
understanding of user intents using GUI screenshots, allows 
users to refer to third-party apps and their GUI screens in 
conversations as inputs for intent disambiguation, and enables 
users to repair breakdowns using direct manipulation on these 
screenshots. The results from a remote user study with 10 
users using SOVITE in 7 scenarios suggested that SOVITE’s 
approach is usable and effective. 

Author Keywords 
Conversational interfaces; conversational breakdown; 
chatbots; grounding in communication; breakdown repair; 
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INTRODUCTION 
Conversational user interfaces have become increasingly pop
ular and ubiquitous in our everyday lives, assisting users with 
tasks from diverse domains. However, despite the advances 
in their natural language understanding capabilities, prevail
ing conversational systems are still far from being able to 
understand the wide range of flexible user utterances and en
gage in complex dialog flows [22]. These agents employ rigid 
communication patterns, requiring that users adapt their com
munication patterns to the needs of the system instead of the 
other way around [5, 27]. As a result, conversational break
downs, defined as failures of the system to correctly understand 
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the intended meaning of the user’s communication, often oc
cur. Conversational breakdowns decrease users’ satisfaction, 
trust, and willingness to continue using a conversational sys
tem [6, 16, 25, 26, 44], and may cause users to abandon the 
current task [3]. In this paper, we study repair strategies for 
such conversational breakdowns, specifically in the context 
of spoken task-oriented conversations with a mobile device, 
grounded in the apps and the display of that mobile device. 

Prior breakdown repair methods in human-agent conversa
tions mainly have used only the natural language modality. 
Code-switching [65], which refers to the act of adjusting the 
speaking style to accommodate the listener [5] in the con
text of conversational agents, is commonly found in users’ 
breakdown repair attempts. Many repair strategies are used 
in these adjustments, depending on the user’s understanding 
of the cause of the breakdown [5, 48]. For example, when the 
user suspects that the system has misheard the utterance, they 
might apply prosodic changes (adjust the rhythm or cadence of 
speech), overarticulation (exaggerating sounds), increased vol
ume, or simply repetitions of the original utterance [5]. They 
might make syntactical adjustments to the original utterance 
if they thought the system did not understand its syntactic 
structure [5]. Similarly, they might perform semantic adjust
ments and modifications, such as replacing a word with its 
synonym, defining a concept, or breaking down a procedure, 
if they suspected the incorrect semantic understanding to be 
the cause of the breakdown [5, 48]. 

However, these strategies are often ineffective for two reasons: 
First, users often lack an accurate understanding of the cause 
of the breakdown because current conversational agents do 
not provide sufficient transparency into the system’s state of 
understanding [5]. Understanding why a breakdown happens 
is crucial for the user to repair it [3]. In current agents, break
downs are often discovered by users only after the system has 
acted incorrectly based on its misunderstanding (i.e., perform
ing the wrong action) or from a generic error response (e.g., 
"Sorry I don’t understand") [5]. Thus, little useful information 
is available for users to infer the cause of the breakdown. The 
system will provide a task-specific clarification response only 
in the small portion of cases where a developer has explic
itly programmed an error handling conversation flow for the 
specific breakdown scenario. 

Second, even when users correctly identify the causes of the 
breakdowns, their repairs in natural language are often in
effective [5]. This is especially problematic in breakdowns 
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Figure 1. The interface of SOVITE: (a) SOVITE shows a app GUI screenshot to communicates its state of understanding. The yellow highlight overlay 
specifies the task slot value. The user can drag the overlay to fix slot value errors. (b) To fix intent detection errors, the user can refer to an app that 
represents their desired task. SOVITE will match the utterance to an app on the phone (with its icon shown), and look for intents that use or are relevant 
to this app. (c) If the intent is still ambiguous after referring to an app, the user can show a specific app screen relevant to the desired task. 

caused by natural language understanding errors, where the 
user needs to make semantic and syntactic adjustments such as 
verbally defining a keyword, explaining a procedure, replacing 
a word with its synonym, or restructuring the sentence instead 
of simply repeating the utterances with exaggerating sounds. 
The user usually needs to guess the right strategy to use due 
to the lack of transparency into the system’s natural language 
understanding models. Existing conversational systems also 
often have problems understanding these repairs due to the 
system’s limited capability of reasoning with natural language 
instructions and common sense knowledge [39]. This is part of 
the reason why commercial systems like Siri and Alexa rarely 
ask users to try to repair the conversation, but just immediately 
perform generic fallback actions such as searching the web. 

Visualizing the agent’s understanding of user intent is a promis
ing way to address these challenges. Some existing agents sup
port displaying visual responses (known as cards1 in Google 
Assistant) within natural language conversations. These cards 
allow the user to see the agent’s state, and to interact with the 
agent visually to complement speech commands. However, 
these cards must be hard-coded by the developers, require 
significant effort to create, and therefore have limited adop
tion across task domains. In this paper, we propose a new 
approach to address these challenges leveraging the graphical 
user interfaces (GUIs) of existing apps. This approach can 
be applied on devices with screens and access to app GUIs, 
such as smartphones and smart display devices (e.g., Amazon 
Echo Show, Google Home Hub). Our approach helps the user 

discover breakdowns and identify their causes by showing the 
system’s state of understanding using GUI screenshots of the 
underlying apps for the task domain. It subsequently allows 
the users to repair the breakdowns by using direct manipula
tion on the screenshots and by making references to relevant 
apps and screens in the conversation. 

The use of app GUIs has many advantages. GUIs and conver
sational agents are two different types of interfaces to mostly 
the same set of underlying computing services, since most, if 
not all, supported task domains in task-oriented conversational 
agents have corresponding mobile apps. The GUIs of these 
apps encapsulate rich knowledge about the flows of the tasks 
and the properties and relations of relevant entities [40]. The 
majority of users are also familiar with the app GUIs, the way 
to interact with them, and their general design patterns [36], 
which makes them ideal mediums through which the agent 
and the user can communicate in a supplementary modality 
during natural language conversations. 

This paper introduces SOVITE2, a new interface that helps 
users discover, identify the causes of, and recover from con
versational breakdowns in task-oriented agents using this app
grounded multi-modal approach (Figure 1). A remote user 
study of 10 participants using SOVITE in 7 conversational 
breakdown scenarios showed that end users were able to suc
cessfully use SOVITE to fix common types of breakdowns 
caused by natural language understanding errors. The partici
pants also found SOVITE easy and natural to use. 

1https://developers.google.com/assistant/conversational/rich- 2SOVITE is named after a type of rock. It is also an acronym for 
responses System for Optimizing Voice Interfaces to Tackle Errors. 



This paper makes the following contributions: 

1.	 A new multi-modal approach that allows users to discover, 
identify the causes of, and repair conversational breakdowns 
caused by natural language understanding errors in task-
oriented agents using the GUIs of existing mobile apps. 

2.	 The SOVITE system: an implementation of the above ap
proach, along with a user study evaluating its effectiveness 
and usability. 

PROBLEM SETTING 

Frame-Based Task-Oriented Conversational Agents 
SOVITE is designed for handling natural language understand
ing errors in task-oriented conversational agents that use the 
frame-based architecture for dialog management [8]. This is 
the most popular architecture used by the majority of existing 
commercial task-oriented agents [29]. It is based on a set of 
frames (also known as intents). Each frame represents a kind 
of intent that the system can extract from user utterances. A 
frame often contains slots whose values are needed for ful
filling the underlying task intent. For a user utterance, the 
system first determines the frame to use (e.g., finding a flight), 
and then tries to fill the slots (e.g., date, departure airport and 
arrival airport) through the dialog. Frames can ensure the 
necessary structures and constraints for task completion [29], 
which are lacking in statistical dialog approaches (e.g., deep 
reinforcement learning for response generation [33,34,57] and 
information retrieval-based structures [66]) often used in so
cial chatbots that converse with human users on open domain 
topics without explicit task completion goals. 

A typical pipeline for a frame-based dialog architecture con
sists of multiple steps, including: (1) speech recognition, (2) 
natural language understanding, (3) natural language gener
ation, and (4) speech synthesis [29]. Among those, (2) natu
ral language understanding causes most of the critical break
downs, as reported in Myers et al.’s study [48] on how users 
overcome obstacles in voice user interfaces. For the (1) speech 
recognition step, state-of-art algorithms have reached human 
parity [67]. For screen-based systems like what we use, the 
user can easily read and edit the transcription from the speech 
recognition step. Further, users’ natural repair strategies such 
as repetition, prosodic changes, and overarticulation are effec
tive for speech recognition errors [5]. The (3) natural language 
generation step in frame-based agents is typically rule-based 
with manually created templates, therefore less prone to errors 
compared with statistical approaches commonly used in so
cial chatbots. Finally, the latest techniques for the (4) speech 
synthesis step reliably produce clear and easy-to-understand 
synthetic speech from text. 

Problem Scope 
This work therefore focuses on the breakdowns caused by 
(2) natural language understanding errors. There are two key 
components in the natural language understanding step: intent 
detection and slot value extraction. Intent detection errors are 
those where the system misrecognizes the intent in the user’s 
utterance, and subsequently invokes the wrong dialog frame 
(e.g., responding “what kind of cuisine would you like” for 
the command “find me a place in Chicago tonight” when the 

user intends to book a hotel room.) In slot value extraction 
errors, the system either extracts the wrong parts in the input 
as slot values (e.g., extracting “Singapore” as the departure 
city in “Show me Singapore Airlines flights to London.") or 
links the extracted phrase to incorrect entities (e.g., resolving 
“apple” in “What’s the price of an apple?" to the entity “Apple 
company” and therefore incorrectly invoking the stock price 
lookup frame). As illustrated in the examples, slot value 
extraction errors can cause either the wrong slot match in the 
dialog frame (the airline example) or the wrong dialog frame 
(the apple example). 

Note that there are other types of breakdowns in task-oriented 
agents that SOVITE does not handle. It does not address (1) 
speech recognition errors, as discussed previously. It also does 
not address breakdowns caused by errors in task fulfillment 
(i.e., exceptions when executing the task), errors in generating 
agent response ((3) and (4)), or the user’s lack of familiarity 
with intents (e.g., the user does not know what intents the 
system can support). 

Instructable Agents 
An instructable agent is a promising new type of frame-based 
agent that can learn intents for new tasks interactively from 
the end user’s natural language instructions [4, 37, 61] and/or 
demonstrations [1, 35, 39, 47]. It allows users to use agents for 
personalized tasks and tasks in “long-tail” domains, addressing 
the “out-of-domain” errors in human-agent conversations [37]. 

However, supporting effective breakdown repair is even more 
challenging for instructable agents. The user-instructed task 
domains have many fewer example utterances (usually only 
one) for training the underlying natural language understand
ing model. As a result, breakdowns caused by natural language 
understanding errors occur more frequently. 

Further, when encountering breakdowns, the instructable 
agents seldom have task-specific error handling mechanisms 
for user-instructed task domains. In agents with professionally-
developed task domains, developers can explicitly program 
error handling conversation flows for domain-specific break
downs [2, 46]. However, end users with little programming 
expertise seldom create such error handlers for user-taught 
tasks due to the lack of tool support, and more importantly, 
the lack of expertise to consider and to handle possible future 
breakdown situations in advance. 

We support instructable agents in SOVITE by (1) supporting 
user-instructed task domains by not requiring existing domain 
knowledge, hard-coded error handling mechanisms, or large 
corpus in the task domains, and (2) supporting the easy tran
sition to user instruction when a breakdown turns out to be 
caused by out-of domain errors rather than natural language 
understanding errors. 

Design Goals 
We have the following design goals: 

1.	 The system should enable users to effectively discover, iden
tify the causes of, and repair conversational breakdowns in 
intent detection and slot value extraction of frame-based 
task-oriented conversational agents. 



2.	 The system should handle conversational breakdowns in var
ious task domains, including user-instructed ones, without 
requiring existing domain knowledge or manually-created 
domain-specific error handling mechanisms. 

RELATED WORK 

Studies of Breakdowns in Conversational Interfaces 
The design of SOVITE is informed by insights from previous 
studies of breakdowns in conversational agents. As reported in 
Beneteau et al.’s 2019 deployment study [5] of Alexa, all study 
participants experienced breakdowns when conversing with 
the agent. The participants used a variety of repair strategies 
based on their understandings of the causes of the breakdowns, 
but those repairs were often not effective since their under
standings were frequently inaccurate. Repairing breakdowns 
caused by natural language understanding errors (compared 
with speech recognition errors) was particularly problematic, 
as the natural repair strategies used by users such as seman
tic adjustments and defining unclear concepts were not well-
supported by the agents. Other studies [3, 9, 14, 27, 48, 54] 
reported similar findings of the types of breakdowns encoun
tered by users and the common repair strategies. 

In a 2020 study conducted by Cho et al. [14], more than half of 
the responses given by Google Home in a user study with five 
information-seeking tasks were “cannot help” error responses 
(40%) or “unrelated” responses (24%) that were not useful for 
the user’s request. In most cases, the “cannot help” messages 
did not provide useful information about the causes of the 
breakdowns to help the users with breakdown repairs. The 
participants were sometimes able to infer the causes of the 
breakdowns from “unrelated” responses, but this process was 
often unreliable and confusing. The 2018 study by Myers 
et al. [48] identified “Rely on GUI” as a strategy that users 
naturally use when they encounter obstacles in conversational 
interfaces, where they looked at the corresponding app’s GUIs 
to look for cues on what to say for task intents. 

Motivated by the these insights, SOVITE helps the users iden
tify the causes of breakdowns by visualizing the system’s state 
of understanding of user intent using the app GUI screenshots. 

Assisting Conversational Breakdown Repairing 
Some previous approaches have been proposed to assist users 
with discovering, identifying, and repairing conversational 
breakdowns. In a taxonomy of conversational breakdown 
repair strategies by Ashktorab et al. [3], repair strategies can be 
categorized into dimensions of: (1) whether there is evidence 
of breakdown (i.e., whether the system makes users aware 
of the breakdown); (2) whether the system attempts to repair 
(e.g., provide options of potential intents), and (3) whether 
assistance is provided for user self-repair (e.g., highlight the 
keywords that contribute to the intent classifier’s decision). 

In the results from that paper [3], the most preferred option 
by the users was to have the system attempt to help with the 
repair by providing options of potential intents. However, as 
discussed earlier, this approach requires domain-specific “deep 
knowledge” about the task and error handling flows manually 
programmed by the developers [2, 46], and therefore is not 

practical for user-instructed tasks. In fact, even agents with 
professionally developed conversational skills such as Alexa 
and Google Assistant often only provide generic error mes
sages (e.g., “I didn’t understand.”) with no transparency into 
the states of understanding in the system and no mechanism 
for further interactions [14, 54]. In comparison, SOVITE does 
not require any additional efforts from the developers. It only 
requires “shallow knowledge” in a domain-general generic 
language model to map user intents to the corresponding app 
screens (details in the Implementation section). 

The second most preferred strategy in [3] was for the system 
to provide more transparency into the cause of the breakdown, 
such as highlighting the keywords that contribute to the in
tent detection results. This approach is also relevant to work 
in explainable machine learning (e.g., [62]), which seeks to 
help users understand the results from intelligent systems and 
therefore provide more effective inputs. However, these ap
proaches usually require users to verbally clarify or define 
these keywords. A previous study [39] found that when users 
tried to verbally explain a concept unknown to the system, 
they often introduced even more unknown concepts in their 
explanations. The agents also have problems understanding 
such explanations due to their limited capability of reasoning 
with natural language instructions and domain knowledge. 

SOVITE further explores the design space of improving system 
transparency—it visualizes the intent detection and slot value 
extraction results with app GUI screenshots. It also allows the 
users to easily repair the breakdowns using references to app 
GUI contents and direct manipulation on the screenshots. 

Multi-Modal Mixed-Initiative Disambiguation Interfaces 
SOVITE uses a multi-modal approach [51] that visually dis
plays the system states and enables direct manipulation in
puts from users in addition to spoken instructions to repair 
breakdowns, unlike prior systems that use only the natural 
language inputs and outputs [2, 3, 46]. SOVITE’s design uses 
the mutual disambiguation pattern [50], where inputs from 
one modality are used to disambiguate inputs for the same 
concept from a different modality. Similar patterns have been 
previously used for handling errors in other recognition-based 
interfaces [45], such as speech recognition [63] and pen-based 
handwriting [31]. Visually-grounded language instructions 
were also used in interactive task learning for robots [59] and 
performing web tasks [1, 56]. SOVITE, to our best knowledge, 
is the first system to use this pattern to handle natural language 
understanding errors for task-oriented dialogs with app GUIs. 

The design of SOVITE also applies the principles of mixed-
initiative interfaces [23]. Specifically, it considers breakdown 
repairing as a human-agent collaboration process, where the 
user’s goals and inputs come with uncertainty. The system 
shows guesses of user goals, assists the user to provide more 
effective inputs, and engages in multi-turn dialogs with the 
user to resolve any uncertainties and ambiguities. This com
bination of multi-modal and mixed-initiative approaches has 
been previously applied in the interactive task learning process 
in systems such as [1,30,36,39]. SOVITE bridges an important 
gap in these systems, as they focus on the ambiguities, uncer
tainties, and vagueness embedded in the user instructions of 



new tasks, while SOVITE addresses the conversational break
downs caused by the natural language understanding problems 
when users invoke already-supported tasks. 

In terms of the technique used, SOVITE extracts the semantics 
of app GUIs [13, 43] for grounding natural language conver
sations. Compared with the previous systems that used the 
semantics of app GUIs for learning new tasks [36, 38, 58], 
extracting task flows [40], and supporting invoking individual 
GUI widgets with voice commands [64], a new idea in SO
VITE is that it encodes app GUIs into the same vector space 
as natural language utterances, allowing the system to look 
up semantically relevant task intents when the user refers to 
apps and app GUI screens in the dialogues for repairing intent 
detection errors (details in the Implementation section). 

THE DESIGN OF SOVITE 

Communicating System State with App GUI Screenshots 
The first step for SOVITE in supporting the users in repairing 
conversational breakdowns is to provide transparency into the 
state of understanding in the system, allowing the users to dis
cover breakdowns and identify their causes. SOVITE leverages 
the GUI screenshots of mobile apps for this purpose. As shown 
in Figure 1a, for the user command, SOVITE displays one or 
more (when there are multiple slots spanning many screens) 
screenshots from an app that corresponds to the detected user 
intent (details of how SOVITE extracts the screenshots and cre
ates the highlight overlays are discussed in the Implementation 
section). For intents with slots, it shows screens that contain 
the GUI widgets corresponding to where the slots would be 
filled if the task was performed manually using the app GUI. 
SOVITE also adds a highlight overlay, shown in yellow in 
Figures 1a and 2, on top of the app’s GUI, which indicates the 
current slot value. If the slot represents selecting an item from 
a menu in the GUI, then the corresponding menu item will 
be highlighted on the screenshot. For an intent without a slot, 
SOVITE displays the last GUI screen from the procedure of 
performing the task manually, which usually shows the result 
of the task. After displaying the screenshot(s), SOVITE asks 
the user to confirm if this is indeed the correct understanding 
of the user’s intent by asking, "I will. . . [the task], is this 
correct?", to which the user can verbally respond. 

For example, as shown in Figure 1a, SOVITE uses the screen-
shot of the “Order” screen in Starbucks app to represent the 
detected intent “buy a [drink type] from Starbucks", and 
highlights the value “Espresso” for the slot drink type on 
the screenshot. 

Design Rationale 
SOVITE’s references to app GUIs help with grounding in 
human-agent interactions. In communication theory, the con
cept of grounding describes conversation as a form of collab
orative action to come up with common ground or mutual 
knowledge [15]. For conversations with computing systems, 
when the user provides an utterance, the system should pro
vide evidence of understanding so that the user can evaluate 
the progress toward their goal [10]. As described in the gulf of 
evaluation and gulf of execution framework [24,49] and shown 
in prior studies of conversational agents [3, 5], execution and 

evaluation are interdependent—in order to choose an effective 
strategy for repairing a conversational breakdown, the user 
needs to first know the current state of understanding in the 
system and be able to understand the cause of the breakdown. 

The app GUI screenshots can be ideal mediums for commu
nicating the state of understanding of the system. They show 
users the evidence of grounding [14] through their familiar 
app GUIs. This approach highlights that the agent performs 
tasks on the user’s behalf, showing the key steps of navigating 
app screens, selecting menu items, and entering text through 
GUIs based on slot values as if a human agent was to perform 
the task using the underlying app. We believe this approach 
should help users to more effectively identify the understand
ing errors because it provides better closeness of mapping [21] 
to how the user would naturally approach this task. Prior stud
ies showed that references to existing app GUIs were effective 
in other aspects of conversational interface designs, such as 
enabling users to explain unknown concepts [39] and helping 
users come up with the language to use to invoke app function
alities [48]. Showing the screenshots of GUIs is also a useful 
way to present the context of a piece of information, making 
the content easier to understand [42]. 

Intent Detection Repair with App GUI References 
When an intent detection result is incorrect, as evidenced by 
the wrong app or the wrong functionality of app shown in a 
confirmation screenshot, or when the agent fails to detect an 
intent from the user’s initial utterance at all (i.e., the system 
responds “I don’t understand the command.”), the user can fix 
the error by indicating the correct apps and app screens for 
their desired task. 

References to Apps 
After the user says that the detected intent is incorrect after 
seeing the app GUI screenshots, or when the system fails to 
detect an intent, SOVITE asks the user "What app should I use 
to perform. . . [the task]?", for which the user can say the 
name of an app for the intended task (shown in Figure 1b). 
SOVITE looks up the collection of all supported task intents 
for not only the intents that use this underlying app, but also in
tents that are semantically related to the supplied app (we will 
discuss how SOVITE finds semantically relevant task intents 
in the Implementation section). 

For example, suppose the agent displays the screenshots of 
the OpenTable app for the utterance “find a place for tonight” 
because it classifies the intent as “book restaurant” when the 
user’s actual intent is ”book hotel”. The user notices that the 
app is wrong from the screenshot and responds “No” when 
the agent asks, “Is this correct?” The agent then asks which 
app to use instead, to which the user answers “Booking.com”, 
which is an app for booking hotel rooms. If there was indeed a 
supported “book a hotel room” intent using the Booking.com 
app, SOVITE would respond “OK, I know how to book a hotel 
room using Booking.com”, and then show the screenshots of 
booking hotel rooms in Booking.com for confirmation. If no 
such intent was available, but there was an intent semantically 
related to the Booking.com app, such as a ‘book a hotel room” 
intent using the Hilton app, SOVITE would respond “I don’t 
know how to find a place for tonight in Booking.com, but I 
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know how to book a hotel room using Hilton” and show the 
corresponding screenshots. The user can verbally confirm per
forming the task using the Hilton app instead, or indicate that 
they still wish to use the Booking.com app and teach the agent 
how to perform this task using Booking.com by demonstration 
(if the underlying agent supports the user instruction of new 
tasks; details discussed below). 

References to App Screens 
In certain situations, the user’s intent can still be ambiguous 
after the user indicates the name of an app; there can be mul
tiple intents associated with the app (for example, if the user 
specifies “Expedia” which can be used for booking flights, 
cruises, or rental cars), or there can be no supported task in
tent in the user-provided app and no intent that meets the 
threshold of being sufficiently “related” to the user-provided 
app. In these situations, SOVITE will ask the user a follow-up 
question “Can you show me which screen in. . . [the app]] 
is most relevant to. . . [the task]?” (shown in Figure 1c). 
SOVITE then launches the app and asks the user to navigate to 
the target screen in the app. (The user may also say “no” and 
start over.) After the user reaches the target screen, they can 
click on a floating SOVITE icon to provide this screen as an 
input to SOVITE. SOVITE then finds intents that are the most 
semantically related to this app screen among the ambiguous 
ones (technical details in the Implementation section), or asks 
the user to teach it a new one by demonstration. 

Ease of Transition to Out-of-Domain Task Instructions 
An important advantage of SOVITE’s intent disambiguation ap
proach is that it supports the easy transition to the user instruc
tion of a new task if the intent disambiguation attempt fails 
when the user’s intended task is out of scope (i.e., there is no 
existing intent that supports the task). An effective approach 
to support handling out-of-scope errors is programming-by
demonstration (PBD) [37]. The state-of-the-art PBD systems 
(e.g., [35, 39, 58]) can learn new tasks from the user’s demon
strations on third-party app GUIs. SOVITE’s approach can 
directly connect to the user instruction mode in these systems. 
Since at this point in the overall process, SOVITE already 
knows the most relevant app and app screen for the user’s in
tended task and how to navigate to this screen in the app, it can 
simply ask the user “Can you teach me how to. . . [the task] 
using. . . [the app] in this screen”, switch back to this screen, 
and have the user to continue demonstrating the intended task 
to teach the agent how to fulfill the previously out-of-scope 
task intent. The user may also start over and demonstrate from 
scratch if they do not want to start the instruction from this 
screen. 

Design Rationale 
The main design rationale of supporting intent detection re
pairs with app GUI references is to make SOVITE’s mechanism 
of fixing intent detection errors consistent with how users dis
cover the errors from SOVITE’s display of intent detection 
results. When users discover the intent detection errors by 
seeing the wrong apps or the wrong screens displayed in the 
confirmation screenshots, the most intuitive way for them to 
fix these errors is to indicate the correct apps and screens that 
should be used for the intended tasks. Their references to 

the apps and the screens also allow SOVITE to extract richer 
semantic context (e.g., the app store descriptions and the text 
labels found on app GUI screens) than having the user simply 
rephrase their utterances, helping with finding semantically 
related task intents (technical details in the Implementation 
section). 

Slot Value Extraction Repair with Direct Manipulation 
If the user finds that the intent is correct (i.e., the displayed 
app and app screen correctly match the user’s intended task), 
but there are errors in the extracted task slot values (i.e., the 
highlighted textboxes, the values in the highlighted textboxes, 
or the highlighted menu items on the confirmation screen-
shots are wrong), the user can fix these errors using direct 
manipulation on the screenshots. 

All the highlight overlays for task slots can be dragged-and
dropped (Figures 1a and 2). For slots represented by GUI 
menu selections, the user can simply drag the highlight overlay 
to select a different item. For example, assuming the agent 
incorrectly selects the item "Espresso" for the utterance "order 
a cold espresso" due to an error in entity recognition, as shown 
in Figure 1a, the user can drag the highlight overlay to "Iced 
Espresso" on the screenshot to specify a different slot value. 
(If the user’s desired slot value is not on the screen, the user can 
say “no” and indicate the correct screen to use, as discussed 
in the previous section.) The same interaction technique also 
works for fixing mismatches in the text-input type slot values. 
For example, if the agent swaps the order between starting 
location and destination in a “requesting Uber ride” intent, 
the user can drag these overlays with location names to move 
them to the right fields in the app GUI screenshot (Figure 2). 
When a field is dragged to another field that already has a 
value, SOVITE performs a swap rather than a replace so as not 
to lose any user-supplied data. 

Alternatively, when the value for a text-input type slot is in
correct, the user can repair it using the popup dialog shown 
in Figure 2. After the user clicks on the highlight overlay 
for a text-input slot, a dialog will pop up, showing the slot’s 
current value in the user’s original utterance. The user can 
adjust the text selection by dragging the highlight boundaries 
in the identified entities (e.g., the system recognizes the slot 
value as "The Lego" when the user says "find showtimes for 
The Lego Movie.") The same dialog alternatively allows the 
user to just enter a new slot value by speech or typing. 

Design Rationale 
We believe these direct manipulation interactions in SOVITE 
are intuitive to the users—this is also supported by the results 
reported in the User Study section. The positions and the 
contents of the highlight overlays represent where and what 
slot values would be entered if the task was performed using 
the GUI of the corresponding app. Therefore, if what SOVITE 
identified does not match what the users would do for the 
intended task, the users can directly fix these inconsistencies 
through simple physical actions such as drag-and-drop and 
text selection gestures, and see immediate feedback on the 
screenshots, which are major advantages of direct manipula
tion [60]. 
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Figure 2. SOVITE provides multiple ways to fix text-input slot value 
errors: LEFT: the user can click the corresponding highlight overlay 
and change its value by adjusting the selection in the original utterance, 
speaking a new value, or just typing in a new value. RIGHT: the user 
can drag the overlays on the screenshot to move a value to a new slot, or 
swap the values between two slots. 

IMPLEMENTATION 
We implemented SOVITE in Java as an Android app. SOVITE 
was developed and tested on a Google Pixel 2 XL phone 
running Android 8.0. It does not require the root access to 
the phone, and should run on any phone with Android 6.0 or 
higher. SOVITE is open-sourced on GitHub3. 

The current implementation of SOVITE builds on our open-
sourced SUGILITE system [35]. SUGILITE is an instructable 
agent that allows end users without significant programming 
expertise to teach new tasks by demonstrating on the GUIs of 
existing third-party Android apps. 

SUGILITE uses a standard frame-based dialog management 
architecture with intents, slots, and slot values. Its natural lan
guage model uses a SEMPRE [7]-based Floating Parser [53] 
that can parse the user’s utterance into a corresponding expres
sion that invokes an intent and sets the respective slot values. 
The model was trained on the lexical (e.g., unigrams, bigrams, 
skip-grams), syntactic (e.g., part-of-speech tags, named-entity 
tags), and semantic (e.g., word embeddings) features extracted 
from the training utterances for each task intent, including 
when users teach new tasks for an utterance (detail in [36,39]). 
Because the task fulfillment in SUGILITE is instructed by end 
users, there are usually only a very small number of sample 
training utterances (often only one) for each task intent. As a 
result, conversational breakdowns are common in SUGILITE’s 
interaction with users when they use utterances with diverse 
vocabulary, structures, or expressions that are not covered in 
the training corpus. 

While we implemented SOVITE with our SUGILITE agent, 
we believe the approach used in SOVITE should generalize 
to other frame-based task-oriented conversational agents as 
well. The only major part of SOVITE’s implementation that is 
specific to SUGILITE is its mechanism for generating app GUI 
screenshot confirmations. However, there are other practical 
ways to generate these app GUI screenshot confirmations 
without relying on the programming by demonstration scripts 
in SUGILITE (details in next section). 

3https://github.com/tobyli/Sugilite_development 

Generating the App GUI Screenshot Confirmations 
In SUGILITE, each supported task intent corresponds to an 
automation script created from user demonstrations of per
forming the task manually using the GUIs of the underlying 
app. Therefore, SOVITE can extract app GUI screenshots for 
these intents by instrumenting the demonstration process. 

When the user starts demonstrating a task, SOVITE creates a 
virtual display device in the background that mirrors the main 
display that the user sees for capturing the screenshots. For 
each GUI action demonstrated by the user, SOVITE takes a 
screenshot that captures this action. At the end of the demon
stration process, SOVITE compares the task slot values with 
the demonstrated actions to identify actions that correspond to 
the task slots and saves these screenshots to be used as the con
firmation for this demonstration’s underlying task intent. For 
example, assuming the user’s demonstration for the task “order 
an Espresso” contains an action “click on the item ‘Espresso”’ 
from a menu on the GUI of Starbucks app, SOVITE will use 
the screenshot taken from the user demonstrating this action as 
a confirmation for the intent. The same mechanism also works 
for slot values from text inputs (e.g., the user demonstrates 
typing “Chicago” into a textbox for a command “book a hotel 
room in Chicago”). 

Although the implementation of generating app GUI screen-
shot confirmations used in SOVITE, as described above, only 
applies to programming-by-demonstration instructable agents 
such as SUGILITE [35], PLOW [1], and VASTA [58], there are 
other feasible approaches for generating app GUI screenshot 
confirmations in other types of agents. For example, recent 
advances in machine learning have been shown to support 
directly matching natural language commands to specific GUI 
elements [52] and generating semantic labels for GUI elements 
from screenshots [13]. For agents that use web API calls to 
fulfill the task intents, it is also feasible to compare the agent 
API calls to the API calls made by apps by analyzing the code 
of the apps (e.g., CHABADA [20]), or to the network traffic 
collected from the apps (e.g., MobiPurpose [28]). These tech
niques should allow associating slots with their corresponding 
app GUI widgets without relying on user demonstrations. 

Finding Relevant Intents from Apps and App Screens 
When the user refers to an app name or an app screen for 
their desired task for disambiguating task intents, SOVITE first 
looks for intents that use exactly this app or this app screen. If 
none of the supported task intents uses the exact app or app 
screen that the user refers to, SOVITE can recommend relevant 
task intents. For example, if the user refers to the app "Book
ing.com" or the page for "List hotels near [location]]" in 
Google Maps to explain the utterance "find a place for tonight", 
SOVITE can prompt "I know how to book a hotel room using 
the Hilton app, is this what you want to do?" 

The technical challenge here is to identify semantically rele
vant task intents based on the user-provided app names and 
app screens. An effective way to match the user’s task intent 
with natural language descriptions of goals (e.g., book hotel) 
to apps (e.g., Booking.com) is to leverage the app descriptions 
in the app stores. For example, MessageOnTap [12] uses word 
embeddings to represent the semantic meanings of individual 
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words in the user utterances and app store descriptions, and 
calculates the cosine similarity between the word embedding 
centroids of each app description and the conversation to rec
ommend relevant apps in human-human conversations (e.g., 
recommending the Calendar app and the OpenTable app when 
one party in the conversation says “let’s schedule a dinner.”) 
SOVITE uses a similar approach but recommends task intents 
from the user references to apps instead of recommending apps 
from the user expressions of task intents as in MessageOnTap. 

Specifically, for each app reference made by the user, a re
mote SOVITE server retrieves its description from the Google 
Play store, and calculates the sentence embeddings for the app 
store description and the sample utterances of each supported 
task intent using a state-of-art pre-trained Sentence-BERT 
model [55], which is a modified BERT network [19] that can 
derive semantically meaningful sentence embeddings for cal
culating semantic relatedness. SOVITE is then able to identify 
the most relevant task intent for the app by finding the task 
intent whose centroid of sentence embeddings of all its sample 
utterances has the highest cosine similarity with the sentence 
embedding of the target app’s app store description. All this 
can be done in real-time as the user is interacting with SOVITE. 

When the user refers to a specific app screen, SOVITE uses 
a similar technique for finding semantically relevant task in
tents. The only difference is that instead of using the sentence 
embeddings of app store descriptions, it uses the embeddings 
of all the text labels shown on the screen, and computes their 
semantic relatedness with each supported task intent to find 
the most relevant one. 

USER STUDY 
We conducted a remote user study4 to evaluate SOVITE. The 
study examined the following two research questions: 

RQ1: Can users understand and use SOVITE’s new features 
for identifying and repairing conversational breakdowns? 

RQ2: Is SOVITE effective for fixing conversational break
downs caused by natural language understanding errors in 
task-oriented agents? 

Participants 
We recruited 10 participants (2 women, 8 men, ages 25-41) 
for our study. 5 participants were graduate students in two 
local universities, and the other 5 worked at different technical, 
administrative, or managerial jobs. All of our participants 
were experienced smartphone users with more than 3 years 
of experience of using smartphones. 8 of the 10 participants 
(80%) were active users of intelligent conversational agents 
such as Alexa, Siri, or Google Assistant. Each participant was 
compensated $15 for their time. 

Study Design 
The remote study session with each participant lasted 30–40 
minutes. After agreeing to the consent form presented online 
and filling out a demographic survey, each participant received 
a short tutorial of SOVITE, which showed the SOVITE fea
tures discussed above. The participant was then presented 
4The study protocol was approved by the IRB at our institution. 

with the 7 tasks in random order. In each task, the participant 
saw an example conversation scenario that contained a user 
voice command and SOVITE’s response (i.e., each scenario 
tells the participant “Assume you have said [utterance], 
and here is the agent’s response. You need to identify whether 
the system’s understanding of the intent was correct and fix 
the breakdown using SOVITE when the understanding was 
incorrect”). The 7 tasks include one “no error” scenario (Sce
nario 1), and 6 breakdown scenarios that cover different types 
of intent detection and slot value extraction errors (Table 1). 
The participant then filled out a post-study questionnaire about 
their experiences with SOVITE, and ended the study with a 
short interview with the experimenter. 

The study was performed remotely using the Zoom video con
ference software. SOVITE ran on a Pixel 2 XL phone running 
Android 8.0 with relevant third party apps pre-installed. We 
streamed the screen display of the phone through a camera 
pointing at its screen, so that the remote participant could see 
and hear the output of the phone. The participant was able 
to control the phone indirectly through the relay of the exper
imenter: the participant could point to a GUI widget on the 
phone screencast with the mouse cursor, and ask the experi
menter to click on the widget or enter text into the widget on 
their behalf. The participant could also ask the experimenter 
to say something by speech to the phone, and the experimenter 
repeated the participant’s utterance exactly. Since speech 
recognition errors were not a concern for this study, repeating 
the utterance was not a confound. 

Impact of the COVID-19 Pandemic 
This study was conducted in April 2020 in the midst of the 
COVID-19 global pandemic. Due to health concerns, we 
were unable to conduct an in-person lab study as originally 
planned. Although in the remote study, the participants were 
not able to directly control and speak to SOVITE, we believe 
the results were still valid for the two research questions we 
asked. Specifically, the study measured whether the users 
could come up with what to do in SOVITE when presented with 
breakdown situations, and whether these inputs were effective 
for breakdown repairs. We tried a few third-party software 
tools for directly screencasting and remote controlling Android 
phones but ran into stability and performance issues with them 
when sharing with remote participants; therefore we used the 
camera method described above. 

Note that this is not a Wizard-of-Oz study because the system 
was actually operating on the participants’ utterances and 
actions—the experimenter just served as an intermediary since 
we could not have the participants use the actual phone. 

Results 
Among the 70 scenario instances (10 participants × 7 sce
narios), including 10 “no error” scenarios, the participants 
correctly identified all 10 “no error” scenarios and discovered 
57 out of 60 errors (95%). Among the discovered errors, they 
successfully fixed all of them using SOVITE. The participants 
failed to notice the error in two instances of Scenario 7 and 
one instance of Scenario 6. When asked to reflect upon their 
experience, the participants attributed all of these failure cases 



# Breakdown Type Example Scenario User Repair Method with SOVITE 

1 No error Make a call to Amazon (in the Phone app) Not applicable 

2 Intent: no intent matched (did not understand the 
command) 

Find something to eat (should order food for de
livery in Doordash) 

Provide a reference to the correct app to use (and 
the screen if needed) 

3 Intent: wrong app used Find a place for tonight (recognized as using 
OpenTable for restaurant booking instead of us
ing Hilton for hotel booking 

Provide a reference to the correct app to use (and 
the screen if needed) 

4 Intent: correct app, wrong screen used Book a ticket to New York (recognized as book
ing a hotel room in Expedia instead of booking a 
flight) 

Provide a reference to the correct screen in Expe
dia to use 

5 Slot: wrong item selected in a menu Buy an Iced Espresso from Starbucks (the slot 
value recognized as “Espresso”) 

Drag the highlight on the screenshot to select the 
correct item 

6 Slot: wrong value extracted for text input Find the showtimes of The Lego Movie (the slot 
value recognized as “The Lego”) 

Click on the highlight on the screenshot to modify 
the slot value 

7 Slot: slot value mismatched Book an Uber ride to airport from home (the 
starting location and the destination are swapped) 

Drag the highlight on the screenshot to swap slot 
values 

Table 1. The 6 breakdown types and a "no error" type covered in the user study, an example scenario for each type, and their corresponding user repair 
methods using SOVITE. All participants saw all 7 in random order. 

to the “expectation of capabilities” problem, which we will 
describe in the Discussion section below. 

Subjective Results 
In a questionnaire after the study, we asked each participant 
to rate statements about SOVITE’s usability and usefulness on 
a 7-point Likert scale from “strongly disagree” to “strongly 
agree”. SOVITE scored on average 6.1 (SD = 0.83) on “I 
find SOVITE helpful for fixing understanding errors in con
versational agents”, 6.4 (SD = 0.8) on “I feel SOVITE is easy 
to use”, and 6.3 (SD = 0.9) on “I’m satisfied with my expe
rience with SOVITE” Specifically for SOVITE’s individual 
features, the participants rated 6.5 (SD = 0.81) on “The high
lights on screenshots for task parameter values are clear” and 
6.2 (SD = 1.54) on “Dragging the highlights to fix parameter 
errors is natural.” These results suggest that our participants 
were positive about the usability and usefulness of SOVITE. 

DISCUSSION 
We observed some confusion over the highlight overlays in 
screenshot confirmations in the participants’ interactions with 
SOVITE. A few participants tried to interact with the other 
GUI components on the screenshots when they first encoun
tered them. For example, in Scenario 4, P1 tried to use the 
back button on the screenshot to switch to the “book flight” 
page. In Scenario 7, P2 was looking for a “swap” button on 
the screenshot. However, after trying to interact with these 
GUI components and receiving no response, they quickly re
alized that only the highlight overlays were interactive on the 
screenshots and successfully repaired the breakdowns there
after. The overlay is not a common metaphor in interfaces— 
users are more familiar with static screenshots where nothing 
is interactive, and actual GUIs where every element can be di
rectly interacted with. The overlay (also known as interaction 
proxy [68]) sits in between, where the user can specify actions 
about an underlying GUI element (e.g., the value that should 
go into a textbox or the menu item that should be selected) 
using direct manipulation, but not directly interact with these 
GUI elements. A future direction is to explore the design 
space of overlay interfaces to make them more intuitive to use. 

The “expectation of capabilities” problems [3, 5, 48] impacted 
the user’s capability to discover errors in SOVITE in some 
cases. For example, the visual clue for Scenario 7 was rather 
subtle on the screenshot (i.e., the highlights for starting lo
cation and destination in Uber were swapped, as shown in 
Figure 2). P7 missed this error and went with “OK” when 
SOVITE asked for confirmation. When asked about this in
stance after the study, P7 said “I didn’t expect it [the system] 
to make this error. . . I thought the original utterance was clear, 
so when I saw two highlights saying “home” and “airport” 
I didn’t carefully check the order since I assumed that the 
system would get it right. . . I was more looking at if this was 
indeed the request ride screen in Uber.” Users may look more 
carefully at places where they expect errors to appear, but 
their expectations might not always match the system’s be
haviors. However, with SOVITE, once the user discovers an 
error, it is straightforward what the cause of error is and how 
to fix it, which is a significant improvement from the prevail
ing systems where the user needs to guess the cause of the 
error (which is often inaccurate) and come up with the repair 
strategy to use (which is often ineffective as a result) [5, 48]. 

Efficiency wise, we did not measure the time-on-task in the 
study due to the delays and overheads from running the study 
remotely. But from our observations, while adding some 
overhead to the conversation, using SOVITE should still be 
more efficient than completing the tasks manually in most 
cases. For example, completing the “order coffee“ task in 
Starbucks requires up to 14 clicks on 8 screens. In comparison, 
the user reads one GUI screenshot confirmation (and fixes the 
errors, if any) in addition to speaking the initial utterance when 
using SOVITE for the same task. 

Design Implications 
SOVITE illustrates the effectiveness of presenting the system’s 
state of understanding in a way closely matched to how the 
user would otherwise (i.e., not using speech) naturally ap
proach the problem to help with error discovery. While speech 
is a natural modality for interacting with task-oriented agents, 
the technical limitations in natural language understanding 
and reasoning capabilities limit its effectiveness in handling 



conversational breakdowns. App GUI screenshots can serve 
as a good complement to natural language in this context. 

An important underlying assumption in SOVITE’s strategy 
of using app GUI screenshots is that users are familiar with 
the app GUIs. This is also the assumption of many prior 
interactive task learning systems like [1, 32, 35, 58]. SOVITE 
requires the user to have a mental model of “apps” so that 
they understand how to complete their intended tasks through 
existing app GUIs. Today, this assumption seems reasonable, 
given the high adoption rate of smartphones [11]. Most app 
GUIs are designed to be easy-to-use with common design 
patterns [18], so users are likely able to understand the screens 
even if they have never used the particular app before. Using 
app GUIs is still by far the most common means through which 
the users access computing services. However, it would be 
interesting to think about how this may change for certain user 
groups in some task domains in the future. For example, are 
we going to see the conversational agents become “the native 
interface” for some tasks and some user groups in the future, 
just as how GUIs replaced command-line interfaces? In our 
opinion, the app-GUI-based approach used in SOVITE can be 
a stepping stone to a more integrated speech-oriented agent in 
the future, which may eventually transcend the app-oriented 
design of current smartphones. 

SOVITE’s design highlights the importance of consistency 
between how users fix the errors and how they discover the 
errors. Once the users discover the errors (e.g., the wrong 
app was used, the wrong screen was shown, the highlights 
are at wrong places, the slot values use the wrong parts of 
the initial utterances, etc.), the ways to fix them are rather 
intuitive and obvious (e.g., saying the correct app, pointing 
to the correct screen, dragging the highlights to the correct 
places, and selecting the right parts of the initial utterances 
to be used in the slot values). This was noticed and praised 
by many participants in our study. With SOVITE, the user no 
longer needs to guess the strategy to fix the error (e.g., explain 
a word, replace words with synonyms, restructure the syntax) 
like with prevailing systems when the error message was the 
generic “Sorry I didn’t understand”. 

LIMITATIONS AND FUTURE WORK 
SOVITE currently does not handle task intents that span multi
ple apps (even though the underlying SUGILITE system does). 
Those intents are often higher-level intents that involve mul
tiple smaller sub-intents within individual apps and informa
tion exchange between them (e.g., “plan a dinner party” can 
involve “find time availability for [people] in Calendar”, 
“make a restaurant reservation at [time]”, and “notify the 
[people] about the [reservation info]”. An interesting 
future challenge is to design a new confirmation mechanism 
to clearly show the system’s state of understanding for such 
cross-domain intents with increased complexity. 

As discussed previously in the Problem Scope section, SOVITE 
only handles intent detection and slot value extraction errors in 
natural language understanding. We hope to integrate SOVITE 
with the existing mechanisms that handle other kinds of errors, 
such as voice recognition errors, task execution errors, and 
feedback generation errors. 

SOVITE currently displays the full app GUI screenshots as 
a part of the conversation. As a result, the screenshots are 
displayed in about half of their original size, making them 
harder to read for the users. The highlight overlays for smaller 
GUI elements are also prone to the “fat finger” problem. To 
address this issue, one approach is to extend our model for 
extracting app GUI screenshots so that it only displays parts of 
the screens that are most relevant to the underlying task intents. 
This might be feasible as we already have a mechanism to 
determine the semantic relatedness between GUI screens and 
task intents, but it risks making it harder for users to understand 
the context of the displayed portions. Another approach is to 
add support for zooming and panning using familiar gestures 
such as pinch-to-zoom on the screenshots. 

We plan to explore the challenge of better encoding the se
mantics of app GUI screens for assisting natural language 
understanding. SOVITE’s current mechanism only takes the 
text labels shown on GUIs into consideration. In the future, 
we plan to capture more comprehensive semantics of app GUI 
screens by leveraging the GUI layouts (e.g., the distance be
tween elements [41] and design patterns [18, 43]), control 
flows among GUI screens [40], and large collections of user 
interaction traces. The availability of large-scale GUI datasets 
like RICO [17] makes future experiments in this area feasible. 

Lastly, the user-provided repairs in SOVITE only apply locally 
to the current dialog session. In the future, we plan to de
velop mechanisms that allow the conversational agent to learn 
from the user-provided repairs to improve its performance. 
The user’s expression of the actual intent for their natural lan
guage command collected through SOVITE can be a highly 
valuable resource for applying online learning (a machine 
learning approach that supports incremental learning using 
small batches of data) to improve the accuracy of the agent’s 
natural language understanding models on the fly. 

CONCLUSION 
Conversational breakdown repairing in task-oriented dialogues 
is surprisingly little studied or handled by research or commer
cial intelligent agents. The lack of effective and robust break
down repair mechanisms significantly affects the adoption of 
these agents. SOVITE shows an app-grounded multi-modal 
approach that can effectively help users discover, identify the 
causes of, and repair breakdowns caused by intent detection 
errors and slot value extraction errors in certain contexts. We 
look forward to future collaborations between HCI, behav
ioral science, and AI/NLP researchers to address this issue in 
human-agent interactions for all kinds of errors in all contexts. 
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