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ABSTRACT
Representing the semantics of GUI screens and components is cru-
cial to data-driven computational methods for modeling user-GUI
interactions and mining GUI designs. Existing GUI semantic repre-
sentations are limited to encoding either the textual content, the
visual design and layout patterns, or the app contexts. Many repre-
sentation techniques also require significant manual data annota-
tion efforts. This paper presents Screen2Vec, a new self-supervised
technique for generating representations in embedding vectors of
GUI screens and components that encode all of the above GUI fea-
tures without requiring manual annotation using the context of
user interaction traces. Screen2Vec is inspired by the word embed-
ding method Word2Vec, but uses a new two-layer pipeline informed
by the structure of GUIs and interaction traces and incorporates
screen- and app-specific metadata. Through several sample down-
stream tasks, we demonstrate Screen2Vec’s key useful properties:
representing between-screen similarity through nearest neighbors,
composability, and capability to represent user tasks.

CCS CONCEPTS
•Human-centered computing→ Smartphones; User interface
design; Graphical user interfaces; • Computing methodolo-
gies → Neural networks.
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1 INTRODUCTION
With the rise of data-driven computational methods for modeling
user interactions with graphical user interfaces (GUIs), the GUI
screens have become not only interfaces for human users to inter-
act with the underlying computing services, but also valuable data
sources that encode the underlying task flow, the supported user
interactions, and the design patterns of the corresponding apps,
which have proven useful for AI-powered applications. For exam-
ple, programming-by-demonstration (PBD) intelligent agents such
as [20, 25, 40] use task-relevant entities and hierarchical structures
extracted from GUIs to parameterize, disambiguate, and handle
errors in user-demonstrated task automation scripts. Erica [10]
mines a large repository of mobile app GUIs to enable user interface
(UI) designers to search for example design patterns to inform their
own design. Kite [26] extracts task flows from mobile app GUIs to
bootstrap conversational agents.

Semantic representations of GUI screens and components, where
each screen and component is encoded as a vector (known as the
embedding), are highly useful in these applications. The representa-
tions of GUI screens and components can be used to also represent
other entities of interest. For example, a task in an app can be
modeled as a sequence of GUI actions, where each action can be
represented as a GUI screen, a type of interaction (e.g., click), and
the component that is interacted with on the screen. An app can
be modeled as a collection of all its screens, or a large collection of
user interaction traces of using the app. Voice shortcuts in mobile
app deep links [2] can be modeled as matching the user’s intent
expressed in natural language to the target GUI screens. The repre-
sentation of the screen that the user is viewing or has previously
viewed can also be used as the context to help infer the user’s in-
tents and activities in predictive intelligent interfaces. The semantic
embedding approach represents GUI screens and components in
a distributed form [4] (i.e., an item is represented across multiple
dimensions) as continuous-valued vectors, making it especially
suitable for use in popular machine learning models.

However, existing approaches of representing GUI screens and
components are limited. One type of approach solely focuses on
capturing the text on the screen, treating the screen as a bag of
words or phrases. For example, Sugilite [20] uses exact matches
of text labels on the screen to generalize the user demonstrated
tasks. Sovite [22] uses the average of individual word embedding
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vectors for all the text labels on the screen to represent the screen
for retrieving relevant task intents. This approach can capture the
semantics of the screen’s textual content, but misses out on using
the information encoded in the layout and the design pattern of
the screen and the task context encoded in the interactivity and
meta-data of the screen components.

Another type of approach focuses on the visual design pat-
terns and GUI layouts. Erica [10] uses an unsupervised clustering
method to create semantic clusters of visually similar GUI com-
ponents. Liu et al.’s approach [30] leverages the hierarchical GUI
structures, the class names of GUI components, and the visual clas-
sifications of graphical icons to annotate the design semantics of
GUIs. This type of approach has been shown to be able to deter-
mine the category of a GUI component (e.g., list items, tab labels,
navigation buttons), the “UX concept” semantics of buttons (e.g.,
“back”, “delete”, “save”, and “share”), and the overall type of task
flow of screens (e.g., “searching”, “promoting”, and “onboarding”).
However, it does not capture the content in the GUIs—two struc-
turally and visually similar screens with different content (e.g., the
search results screen in a restaurant app and a hotel booking app)
will yield similar results.

There have been prior approaches that combine the textual con-
tent and the visual design patterns [28, 36]. However, these ap-
proaches use supervised learning with large datasets for very spe-
cific task objectives. Therefore they require significant task-specific
manual data labeling efforts, and their resulting models cannot
be used in different downstream tasks. For example, Pasupat et
al. [36] create a embedding-based model that can map the user’s
natural language commands to web GUI elements based on the
text content, attributes, and spatial context of the GUI elements.
Li et al.’s work [28] describes a model that predicts sequences of
mobile GUI action sequences based on step-by-step natural lan-
guage descriptions of actions. Both models are trained using large
manually-annotated corpora of natural language utterances and
the corresponding GUI actions.

We present a new self-supervised technique (i.e., the type of ma-
chine learning approach that trains a model without human-labeled
data by withholding some part of the data, and tasking the net-
work with predicting it) Screen2Vec for generating more compre-
hensive semantic representations of GUI screens and components.
Screen2Vec uses the screens’ textual content, visual design and lay-
out patterns, and app context meta-data. Screen2Vec’s approach
is inspired by the popular word embedding method Word2Vec [32],
where the embedding vector representations of GUI screens and
components are generated through the process of training a pre-
diction model. However, unlike Word2Vec, Screen2Vec uses a two-
layer pipeline informed by the structures of GUIs and GUI interac-
tion traces and incorporates screen- and app-specific metadata.

The embedding vector representations produced by Screen2Vec
can be used in a variety of useful downstream tasks such as nearest
neighbor retrieval, composability-based retrieval, and representing
mobile tasks. The self-supervised nature of Screen2Vec allows its
model to be trained without any manual data labeling efforts—it
can be trained with a large collection of GUI screens and the user
interaction traces on these screens such as the Rico [9] dataset.

Along with this paper, we also release the open-source1 code of
Screen2Vec as well as a pre-computed Screen2Vec model trained
on the Rico dataset [9] (more in Section 2.1). The pre-computed
model can encode the GUI screens of Android apps into embedding
vectors off-the-shelf. The open-source code can be used to train
models for other platforms given the appropriate dataset of user
interaction traces.

Screen2Vec addresses an important gap in prior work about
computational HCI research. The lack of comprehensive semantic
representations of GUI screens and components has been iden-
tified as a major limitation in prior work in GUI-based interac-
tive task learning (e.g., [25, 40]), intelligent suggestive interfaces
(e.g., [7]), assistive tools (e.g., [5]), and GUI design aids (e.g., [17, 41]).
Screen2Vec embeddings can encode the semantics, contexts, lay-
outs, and patterns of GUIs, providing representations of these types
of information in a form that can be easily and effectively incorpo-
rated into popular modern machine learning models.

This paper makes the following contributions:

(1) Screen2Vec: a new self-supervised technique for generating
more comprehensive semantic embeddings of GUI screens
and components using their textual content, visual design
and layout patterns, and app meta-data.

(2) An open-sourced GUI embedding model trained using the
Screen2Vec technique on the Rico [9] dataset that can be
used off-the-shelf.

(3) Several sample downstream tasks that showcase the model’s
usefulness.

2 OUR APPROACH
Figure 1 illustrates the architecture of Screen2Vec. Overall, the
pipeline of Screen2Vec consists of two levels: the GUI component
level (shown in the gray shade) and the GUI screen level. We will
first describe the approach at a high-level here, and then explain
the details in Section 2.2.

The GUI component level model encodes the textual content
and the class type of a GUI component into a 768-dimensional2
embedding vector to represent the GUI component (e.g., a button,
a textbox, a list entry etc.). This GUI component embedding vector
is computed with two inputs: (1) a 768-dimensional embedding
vector of the text label of the GUI component, encoded using a
pre-trained Sentence-BERT [39] model; and (2) a 6-dimensional
class embedding vector that represents the class type of the GUI
component, which we will discuss in detail later in Section 2.2. The
two embedding vectors are combined using a linear layer, resulting
in the 768-dimensional GUI component embedding vector that
represents the GUI component. The class embeddings in the class
type embedder and the weights in the linear layer are optimized
through training a Continuous Bag-of-Words (CBOW) prediction
task: for each GUI component on each screen, the task predicts the
current GUI component using its context (i.e., all the other GUI
components on the same screen). The training process optimizes

1A pre-trained model and the Screen2Vec source code are available at: https://github.
com/tobyli/screen2vec
2We decided to produce 768-dimensional vectors so that they can be directly used
with the 768-dimensional vectors produced by the pre-trained Sentence-BERT model
with its default settings [39]

https://github.com/tobyli/screen2vec
https://github.com/tobyli/screen2vec
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Figure 1: The two-level architecture of Screen2Vec for generating GUI component and screen embeddings. The weights for the
steps in teal color are optimized during the training process.

the weights in the class embeddings and the weights in the linear
layer for combining the text embedding and the class embedding.

The GUI screen level model encodes the textual content, visual
design and layout patterns, and app context of a GUI screen into an
1536-dimensional embedding vector. This GUI screen embedding
vector is computed using three inputs: (1) the collection of the GUI
component embedding vectors for all the GUI components on the
screen (as described in the last paragraph), combined into a 768-
dimension vector using a recurrent neural network model (RNN),
which we will discuss more in Section 2.2; (2) a 64-dimensional
layout embedding vector that encodes the screen’s visual layout
(details later in Section 2.2); and (3) a 768-dimensional embedding
vector of the textual App Store description for the underlying app,
encoded with a pre-trained Sentence-BERT [39] model. These GUI
and layout vectors are combined using a linear layer, resulting in a
768-dimensional vector. After training, the description embedding
vector is concatenated on, resulting in the 1536-dimensional GUI
screen embedding vector (if included in the training, the descrip-
tion dominates the entire embedding, overshadowing information
specific to that screen within the app). The weights in the RNN
layer for combining GUI component embeddings and the weights
in the linear layer for producing the final output vector are similarly
trained on a CBOW prediction task on a large number of interac-
tion traces (each represented as a sequence of screens). For each
trace, a sliding window moves over the sequence of screens. The
model tries to use the representation of the context (the surround-
ing screens) to predict the screen in the middle. See Section 2.2 for
more details.

However, unlike the GUI component level embedding model, the
GUI screen level model is trained on a screen prediction task in the
user interaction traces of using the apps. Within each trace, the

training task tries to predict the current screen using other screens
in the same trace.

2.1 Dataset
We trained Screen2Vec on the open-sourced Rico3 dataset [9].
The Rico dataset contains interaction traces on 66,261 unique GUI
screens from 9,384 free Android apps collected using a hybrid crowd-
sourcing plus automated discovery approach. For each GUI screen,
the Rico dataset includes a screenshot image (that we did not use
in Screen2Vec), and the screen’s “view hierarchy” in a JSON file.
The view hierarchy is structurally similar to a DOM tree in HTML;
it starts with a root view, and contains all its descents in a tree. The
node for each view includes the class type of this GUI component,
its textual content (if any), its location as the bounding box on the
screen, and various other properties such as whether it is clickable,
focused, or scrollable, etc. Each interaction trace is represented as
a sequence of GUI screens, as well as information about which (x,
y) screen location was clicked or swiped on to transit from the
previous screen to the current screen.

2.2 Models
This section explains the implementation details of each key step
in the pipeline shown in Figure 1.

GUI Class Type Embeddings. To represent the class types of GUI
components, we trained a class embedder to encode the class types
into the vector space. We used a total of 26 class categories: the
22 categories that were present in [30], one layout category, list
and drawer categories, and an “Other” category. We classified the
GUI component classes based on the classes of their className
properties and, sometimes, other simple heuristic rules (see Table 1).

3Available at: http://interactionmining.org/rico

http://interactionmining.org/rico
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For example, if a GUI component is an instance of EditText (i.e.,
its className property is either EditText, or a class that inherits
EditText), then it is classified as an Input. There are two exceptions:
the Drawer and the List Item categories look at the className of the
parent of the current GUI component instead of the className of
itself. A standard PyTorch embedder (torch.nn.Embedding4) maps
each of these 26 discrete categories into a continuous 6-dimensional
vector. The embedding vector value for each category is optimized
during the training process for the GUI component prediction tasks
so that GUI components categories that are semantically similar to
each other are closer together in the vector space.

GUI Component Context. As discussed earlier, Screen2Vec uses a
Continuous Bag-of-Words (CBOW) prediction task [32] for training
the weights in the model, where for each GUI component, the
model tries to predict it using its context. In Screen2Vec, we define
the context of a GUI component as its 16 nearest components.
The size 16 is chosen to balance the model performance and the
computational cost.

Inspired by prior work on the correlation between the semantic
relatedness of entities and the spatial distance between them [27].
We tried using two different measures of screen distance for deter-
mining GUI component context in our model: EUCLIDEAN, which
is the straight-line minimal distance on the screen (measured in
pixels) between the bounding boxes of the two GUI components;
and HIERARCHICAL, which is the distance between the two GUI
components on the hierarchical GUI view tree. For example, a GUI
component has a distance of 1 to its parent and children and a
distance of 2 to its direct siblings.

Linear Layers. At the end of each of the two levels in the pipeline,
a linear layer is used to combine multiple vectors and shrink the
combined vector into a lower-dimension vector that contains the
relevant semantic content of each input. For example, in the GUI
component embedding process, the model first concatenates the
768-dimensional text embedding with the 6-dimensional class em-
bedding. The linear layer then shrinks the GUI component em-
bedding back down to 768 dimensions. The linear layer works by
creating 774 × 768 weights: one per pair of input dimension and
output dimension. These weights are optimized along with other pa-
rameters during the training process, so as to minimize the overall
total loss (loss function detail in Section 2.3).

In the screen embedding process, a linear layer is similarly used
for combining the 768-dimensional layout embedding vector with
the 64-dimensional GUI content embedding vector to produce a new
768-dimensional embedding vector that encodes both the screen
content and the screen layout.

Text Embeddings. We use a pre-trained Sentence-BERT language
model [39] to encode the text labels on each GUI component and
the Google Play store description for each app into 768-dimensional
embedding vectors. This Sentence-BERTmodel, which is a modified
BERT network [11], was pre-trained on the SNLI [6] dataset and
the Multi-Genre NLI [43] dataset with a mean-pooling strategy, as
described in [39]. This pre-trained model has been shown to per-
form well in deriving semantically meaningful sentence and phrase

4https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

embeddings where semantically similar sentences and phrases are
close to each other in the vector space [39].

Layout Embeddings. Another important step in the pipeline is to
encode the visual layout pattern of each screen. We use the layout
embedding technique from [9], where we first extract the layout
of a screen from its screenshot using the bounding boxes of all
the leaf GUI components in the hierarchical GUI tree, differenti-
ating between text and non-text GUI components using different
colors (Figure 2). This layout image represents the layout of the
GUI screen while abstracting away its content and visual specifics.
We then use an image autoencoder to encode each image into a
64-dimensional embedding vector. The autoencoder is trained using
a typical encoder-decoder architecture, that is, the weights of the
network are optimized to produce the 64-dimensional vector from
the original input image that can produce the best reconstructed
image when decoded.

The encoder has input dimension of 11,200, and then two hidden
layers of size 2,048 and 256, with output dimension of size 64;
this means three linear layers of sizes 11, 200 → 2, 048, 2, 048 →
256, and 256 → 64. These layers have the Rectified Linear Unit
(ReLU) [34] applied, so the output of each linear layer is put through
an activation function which transforms any negative input to 0.
The decoder has the reverse architecture (three linear layers with
ReLU 64 → 256, 256 → 2, 048, and 2, 048 → 11, 200). The layout
autoencoder is trained on the process of reconstructing the input
image when it is run through the encoder and the decoder; the loss
is determined by the mean squared error (MSE) between the input
of the encoder and the output of the decoder.

GUI Embedding Combining Layer. To combine the embedding
vectors of multiple GUI components on a screen into a single fixed-
length embedding vector, we use an Recurrent Neural Network
(RNN): The RNN operates similarly to the linear layer mentioned
earlier, except it deals with sequential data (thus the “recurrent”
in the name). The RNN we used was a sequence of linear layers
with the additional input of a hidden state. The GUI component
embeddings are fed into the RNN in the pre-order traversal order
of the GUI hierarchy tree. For the first input of GUI component
embedding, the hidden state was all zeros, but for the second input,
the output from the first serves as the hidden state, and so on, so
that the 𝑛𝑡ℎ input is fed into a linear layer along with (𝑛 − 1)𝑡ℎ
output. The overall output is the output for the final GUI component
in the sequence, which encodes parts of all of the GUI components,
since the hidden states could pass on that information. This allows
screens with different numbers of GUI components to have vector
representations that both take all GUI components into account
and are of the same size. This RNN is trained along with all other
parameters in the screen embedding model, optimizing for the loss
function (detail in Section 2.3) in the GUI screen prediction task.

2.3 Training Configurations
In the training process, we use 90% of the data for training and
save the other 10% for validation. The models are trained on a
cross entropy loss function with an Adam optimizer [15], which
is an adaptive learning gradient-based optimization algorithm of

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
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GUI Component Associated Class Type GUI Component Associated Class Type
Advertisement AdView, HtmlBannerWebView, AdContainer Layouts LinearLayout, AppBarLayout, FrameLayout,

RelativeLayout, TableLayout

Bottom Navigation BottomTabGroupView, BottomBar Button Bar ButtonBar

Card CardView CheckBox CheckBox, CheckedTextView

Drawer (Parent) DrawyerLayout Date Picker DatePicker

Image ImageView Image Button ImageButton, GlyphView, AppCompatButton,
AppCompatImageButton, ActionMenuItemView,
ActionMenuItemPresenter

Input EditText, SearchBoxView,
AppCompatAutoCompleteTextView, TextViewa

List Item (Parent) ListView, RecyclerView, ListPopupWindow,
TabItem, GridView

Map View MapView Multi-Tab SlidingTab

Number Stepper NumberPicker On/Off Switch Switch

Pager Indicator ViewPagerIndicatorDots, PageIndicator,
CircileIndicator, PagerIndicator

RadioButton RadioButton, CheckedTextView

Slider SeekBar TextButton Buttonb, TextViewc

Tool Bar ToolBar, TitleBar, ActionBar Video VideoView

Web View WebView Drawer Item Others category and ancestor is
Drawer(Parent)

List Item Others category and ancestor is
List(Parent)

Others ...

aThe property editable needs to be TRUE.
bThe GUI component needs to have a non-empty text property.

cThe property clickable needs to be TRUE.

Table 1: The 26 categories (including the “Others” category) of GUI class types we used in Screen2Vec and their associated base
class names. Some categories have additional heuristics, as shown in the notes. This categorization is adapted from [30].

Figure 2: Screen2Vec extracts the layout of a GUI screen as a bitmap, and encodes this bitmap into a 64-dimensional vector
using a standard autoencoder architecture where the autoencoder is trained on the loss of the output of the decoder [9].

stochastic objective functions. For both stages, we use an initial
learning rate of 0.001 and a batch size of 256.

The GUI component embedding model takes about 120 epochs to
train, while the GUI screen embedding model takes 80–120 epochs
depending on which version is being trained5. A virtual machine

5The version without spatial information takes 80 epochs; and the one with spatial
information takes 120.

with 2NVIDIATesla K80GPUs can train the GUI component embed-
ding model in about 72 hours, and train the GUI screen embedding
model in about 6-8 hours.

We used PyTorch’s implementation of the CrossEntropyLoss
function6 to calculate the prediction loss. The CrossEntropyLoss

6https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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function combines negative log likelihood loss (NLL Loss) with the
log softmax function:

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 (𝑥, 𝑐𝑙𝑎𝑠𝑠) = 𝑁𝐿𝐿_𝐿𝑜𝑠𝑠 (𝑙𝑜𝑔𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥), 𝑐𝑙𝑎𝑠𝑠))

= −𝑙𝑜𝑔( 𝑒𝑥𝑝 (𝑥 [𝑐𝑙𝑎𝑠𝑠])∑
𝑐 𝑒𝑥𝑝 (𝑥 [𝑐])

)

= −𝑥 [𝑐𝑙𝑎𝑠𝑠] + 𝑙𝑜𝑔
∑

𝑐
𝑒𝑥𝑝 (𝑥 [𝑐])

In the case of the GUI component embedding model, the total
loss is the sum of the cross entropy loss for the text prediction and
the cross entropy loss for the class type prediction. In calculating
the cross entropy loss, each text prediction was compared to every
possible text embedding in the vocabulary, and each class prediction
was compared to all possible class embeddings.

In the case of the GUI screen embedding model, the loss is ex-
clusively for screen predictions. However, the vector 𝑥 does not
contain the similarity between the correct prediction and every
screen in the dataset. Instead we use negative sampling [31, 32]
so that we do not have to recalculate and update every screen’s
embedding on every training iteration, which is computationally
expensive and prone to over-fitting. In each iteration, the prediction
is compared to the correct screen and a sample of negative data that
consists of: a random sampling of size 128 of other screens, the
other screens in the batch, and the screens in the same trace as the
correct screen, used in the prediction task. We specifically include
the screens in the same trace to promote screen-specific learning
in this process: This way, we can disincentive screen embeddings
that are based solely on the app7, and emphasize having the model
learn to differentiate the different screens within the same app.

2.4 Baselines
We compared Screen2Vec to the following three baseline models:

Text Embedding Only. The TextOnlymodel replicates the screen
embedding method used in Sovite [22]. It only looks at the textual
content on the screen: the screen embedding vector is computed by
averaging the text embedding vectors for all the text found on the
screen. The pre-trained Sentence-BERT model [39] calculates the
text embedding vector for each text. With the the TextOnly model,
screens with semantically similar textual contexts will have similar
embedding vectors.

Layout Embedding Only. The LayoutOnly model replicates the
screen embedding method used in the original Rico paper [9]. It
only looks at the visual layout of the screen: It uses the layout
embedding vector computed by the layout autoencoder to represent
the screen, as discussed in Section 2.2. With the LayoutOnlymodel,
screens with similar layouts will have similar embedding vectors.

Visual Embedding Only. The VisualOnly model encodes the
visual look of a screen by applying an autoencoder (described in
Section 2.2) directly on its screenshot image bitmap instead of
the layout bitmap. This baseline is inspired by the visual-based
approach used in GUI task automation systems such as VASTA [40],

7Since the next screen is always within the same app and therefore shares an app
description embedding, the prediction task favors having information about the specific
app (i.e., app store description embedding) dominate the embedding.

Sikuli [44], and HILC [14]. With the VisualOnly model, screens
that are visually similar will have similar embedding vectors.

2.5 Prediction Task Results
We report the performance on the GUI component and GUI screen
prediction tasks of the Screen2Vecmodel, as well as the GUI screen
prediction performance for the baseline models described above.

Table 2 shows the top-1 accuracy (i.e., the top predicted GUI
component matches the correct one), the top-0.01% accuracy (i.e.,
the correct GUI component is among the top 0.01% in the predic-
tion result), the top-0.1% accuracy, and the top-1% accuracy of the
two variations of the Screen2Vec model on the GUI component
prediction task, where the model tries to predict the text content
for each GUI component in all the GUI screens in the Rico dataset
using its context (the other GUI components around it) among the
collection of all the GUI components in the Rico dataset.

Similarly, Table 3 reports the accuracy of the Screen2Vecmodel
and the baseline models (TextOnly, LayoutOnly, and VisualOnly)
on the task of predicting GUI screens, where each model tries to
predict each GUI screen in all the GUI interaction traces in the Rico
dataset using its context (the other GUI screens around it in the
trace) among the collection of all the GUI screens in the Rico dataset.
For the Screen2Vec model, we compare three versions: one that
encodes the locations of GUI components and the screen layouts
and uses the EUCLIDEAN distancemeasure, one that uses such spatial
information and the HIERARCHICAL distance measure, and one that
uses the EUCLIDEAN distance measure without considering spatial
information. A higher accuracy indicates that that the model is
better at predicting the correct screen.

We also report the normalized root mean square error (RMSE) of
the predicted screen embedding vector for each model, normalized
by the mean length of the actual screen embedding vectors. A
smaller RMSE indicates that the top prediction screen generated by
the model is, on average, more similar to the correct screen.

From the results in Table 3, we can see that the Screen2Vecmod-
els perform better than the baseline models in top-1 and top-k pre-
diction accuracy. Among the different versions of Screen2Vec, the
versions that encode locations of GUI components and the screen
layouts performs better than the one without spatial information,
suggesting that such spatial information is useful. The model that
uses the HIERARCHICAL distance performs similarly to the one that
uses the EUCLIDEAN distance in GUI component prediction, but per-
forms worse in screen prediction. In the Sample Downstream Tasks
section below, we will use the Screen2Vec-EUCLIDEAN-spatial
info version of the Screen2Vec model.

As we can see, adding spatial information dramatically improves
the Top-1 accuracy and the Top-0.01% accuracy. However, the im-
provements in Top 0.1% accuracy, Top 1% accuracy, and normalized
RMSE are smaller. We think the main reason is that aggregating the
textual information, GUI class types, and app descriptions is useful
for representing the high-level “topic” of a screen (e.g., a screen
is about hotel booking because its text and app descriptions talk
about hotels, cities, dates, rooms etc.), hence the good top 0.1% and
1% accuracy and normalized RMSE for the“no spatial info” model.
But these types of information are not sufficient for reliably differ-
entiating the different types of screens needed (e.g., search, room
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Model Top-1 Accuracy Top 0.01% Accu-
racy

Top 0.1% Accu-
racy

Top 1% Accu-
racy

Top 5% Accu-
racy

Top 10% Accu-
racy

Screen2Vec-EUCLIDEAN-text 0.443 0.619 0.783 0.856 0.885 0.901
Screen2Vec-HIERARCHICAL-text 0.588 0.687 0.798 0.849 0.878 0.894

Table 2: The GUI component prediction performance of the two variations of the Screen2Vecmodel with two different distance
measures (EUCLIDEAN and HIERARCHICAL).

details, order confirmation) in the hotel booking process because all
these screens in the same app and task domain would contain “se-
mantically similar” text. This is why the adding spatial information
is helpful in identifying the top-1 and top-0.01% results.

Interestingly, the baseline models beat the “no spatial info” ver-
sion of Screen2Vec in normalized RMSE: i.e., although the base-
line models are less likely to predict the correct screen, their pre-
dicted screens are, on average, more similar to the correct screen. A
likely explanation to this phenomenon is that both baseline models
use, by nature, similarity-based measures, while the Screen2Vec
model is trained on a prediction-focused loss function. Therefore
Screen2Vec does not emphasize making more similar predictions
when then prediction is incorrect. However, we can see that the
spatial info versions of Screen2Vec perform better than the
baseline models on both the prediction accuracy and the similarity
measure.

3 SAMPLE DOWNSTREAM TASKS
Note that while the accuracy measures are indicative of how much
the model has learned about GUI screens and components, the main
purpose of the Screen2Vecmodel is not to predict GUI components
or screens, but to produce distributed vector representations for
them that encode useful semantic, layout, and design properties.
Therefore this section presents several sample downstream tasks to
illustrate important properties of the Screen2Vec representations
and the usefulness of our approach.

3.1 Nearest Neighbors
The nearest neighbor task is useful for data-driven design, where
the designers want to find examples for inspiration and for un-
derstanding the possible design solutions [9]. The task focuses on
the similarity between GUI screen embeddings: for a given screen,
what are the top-N most similar screens in the dataset? The simi-
lar technique can also be used for unsupervised clustering in the
dataset to infer different types of GUI screens. In our context, this
task also helps demonstrate the different characteristics between
Screen2Vec and the three baseline models.

We conducted a Mechanical Turk study to compare the similarity
between the nearest neighbor results generated by the different
models. We selected 50 screens from apps and app domains that
most users are familiar with. We did not select random apps from
the Rico dataset, as many apps in the dataset would be obscure to
Mechanical Turk workers so they might not understand them and
therefore might not be able to judge the similarity of the results.
For each screen, we retrieved the top-5 most similar screens using
each of the 3 models. Therefore, each of the 50 screens had up to 3

(models) × 5 (screen each) = 15 similar screens, but many had fewer
since different models may select the same screens.

79 Mechanical Turk workers participated in this study8. In total,
they labeled the similarity between 5,608 pairs of screens. Each
worker was paid $2 for each batch of 5 sets of source screens they
labeled. A batch on average takes around 10 minutes to complete.
In each batch, a worker went through a sample of 5 source screens
from the 50 source screens in random order, where for each source
screen, the worker saw the union of the top-5 most similar screens
to the source screen generated by the 3 models in random order. For
each screen, we also showed the worker the app it came from and a
short description of the app from the Google Play Store, but we did
not show them which model produced the screen. The worker was
asked to rate the similarity of each screen to the original source
screen on a scale of 1 to 5 (Figure 3). We asked the workers to
consider 3 aspects in measuring similarity: (1) app similarity (how
similar are the two apps); (2) screen type similarity (how similar are
the types of the two screens e.g., if they are both sign up screens,
search results, settings menu etc.); and (3) content similarity (how
similar are the content on the two screens).

Table 4 shows the mean screen similarity rated by the Mechan-
ical Turk workers for the top-5 nearest neighbor results of the
sample source screens generated by the 3 models. The Mechan-
ical Turk workers rated the nearest neighbor screens generated
by the Screen2Vec model to be, on average, more similar to their
source screens than the nearest neighbor screens generated by the
baseline TextOnly and LayoutOnly models. Tested with a non-
parametric Mann-Whitney U test (because the ratings are not
normally distributed), the differences between the mean ratings
of the Screen2Vec model and both the TextOnly model and the
LayoutOnly model are significant (𝑝 < 0.0001).

Subjectively, when looking at the nearest neighbor results, we
can see the different aspects of the GUI screens that each differ-
ent model captures. Screen2Vec can create more comprehensive
representations that encode the textual content, visual design and
layout patterns, and app contexts of the screen compared with the
baseline models, which only capture one or two aspects. For exam-
ple, Figure 4 shows the example nearest neighbor results for the
“request ride” screen in the Lyft app. Screen2Vec model retrives
the “get direction” screen in the Uber Driver app, “select naviga-
tion type” screen in the Waze app, and “request ride” screen in the
Free Now (My Taxi) app. Considering the Visual and component
layout aspects, the result screens all feature a menu/information
card at the bottom 1/3 to 1/4 of the screen, with a MapView taking
the majority of the screen space. Considering the content and app
domain aspects, all of these screens are from transportation-related
8The protocol was approved by the IRB at our institution.
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Model Top-1 Accu-
racy

Top 0.01% Ac-
curacy

Top 0.1% Accu-
racy

Top 1% Accu-
racy

Top 5% Accu-
racy

Normalized
RMSE

Screen2Vec-EUCLIDEAN-spatial info 0.061 0.258 0.969 0.998 1.00 0.853
Screen2Vec-HIERARCHICAL-spatial info 0.052 0.178 0.646 0.924 0.990 0.997
Screen2Vec-EUCLIDEAN-no spatial info 0.0065 0.116 0.896 0.986 0.999 1.723
TextOnly 0.012 0.055 0.196 0.439 0.643 1.241
LayoutOnly 0.0041 0.024 0.091 0.222 0.395 1.135
VisualOnly 0.0060 0.026 0.121 0.252 0.603 1.543

Table 3: The GUI screen prediction performance of the three variations of the Screen2Vec model and the baseline models
(TextOnly, LayoutOnly, and VisualOnly).

Figure 3: The interface shown to the Mechanical Turk workers for rating the similarities for the nearest neighbor results
generated by different models.

Screen2Vec TextOnly LayoutOnly

Mean Rating Std. Dev. Mean Rating Std. Dev. Mean Rating Std. Dev.
3.295* 1.238 3.014* 1.321 2.410* 1.360

Table 4: Themean screen similarity rated by theMechanical Turk workers for the top-5 nearest neighbor results of the sample
source screens generated by the 3 models: Screen2Vec, TextOnly, and LayoutOnly (*p<0.0001).
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Figure 4: The example nearest neighbor results for the Lyft “request ride” screen generated by the Screen2Vec, TextOnly, and
LayoutOnly models.

apps that allow the user to configure a trip. In comparison, the
TextOnly model retrieves the “request ride” screen from the zTrip
app, the “main menu” screen from the Hailo app (both zTrip and
Hailo are taxi hailing apps), and the home screen of the Paytm app
(a mobile payment app in India). The commonality of these screens
is that they all include text strings that are semantically similar to
“payment” (e.g., add payment type, wallet, pay, add money), and
strings that are semantically similar to “destination” and “trips”
(e.g., drop off location, trips, bus, flights). But the model did not
consider the visual layout and design patterns of the screens nor the
app context. Therefore the result contains the “main menu” (a quite

different type of screen) in the Hailo app and the “home screen” in
the Paytm app (a quite different type of screen in a different type
of app). The LayoutOnly model, on the other hand, retrieves the
“exercise logging” screens from the Map My Walk app and the Map
My Ride app, and the tutorial screen from the Clever Dialer app. We
can see that the content and app-context similarity of the result of
the LayoutOnlymodel is quite lower than those of the Screen2Vec
and TextOnly models. However, the result screens all share similar
layout features as the source screen, such as the menu/information
card at the bottom of the screen and the screen-wide button at the
bottom of the menu.
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Figure 5: An example showing the composability of Screen2Vec embeddings: running the nearest neighbor query on the com-
posite embedding of Marriott app ’s hotel booking page + Cheapoair app’s hotel booking page − Cheapoair app’s search result
page can match the Marriott app’s search result page and the similar pages of a few other travel apps.

3.2 Embedding Composability
A useful property of embeddings is that they are composable—
meaning that we can add, subtract, and average embeddings to form
a meaningful new one. This property is commonly used in word
embeddings. For example, in Word2Vec, analogies such as “man
is to woman as brother is to sister” is reflected in that the vector
(𝑚𝑎𝑛 −𝑤𝑜𝑚𝑎𝑛) is similar to the vector (𝑏𝑟𝑜𝑡ℎ𝑒𝑟 − 𝑠𝑖𝑠𝑡𝑒𝑟 ). Besides
representing analogies, this embedding composability can also be
utilized for generative purposes—for example, (𝑏𝑟𝑜𝑡ℎ𝑒𝑟 −𝑚𝑎𝑛 +
𝑤𝑜𝑚𝑎𝑛) results in an embedding vector that represents “sister”.

This property is also useful in screen embeddings. For example,
we can run a nearest neighbor query on the composite embedding of
(Marriott app ’s “hotel booking” screen + (Cheapoair app’s “search
result” screen − Cheapoair app’s “hotel booking” screen)). The top
result is the “search result” screen in the Marriott app (see Figure 5).
When we filter the result to focus on screens from apps other than
Marriott, we get screens that show list results of items from other
travel-related mobile apps such as Booking, Last Minute Travel,
and Caesars Rewards.

The composability can make Screen2Vec particularly useful for
GUI design purposes—the designer can leverage the composability
to find inspiring examples of GUI designs and layouts. We will
discuss more about its potential applications in Section 4.

3.3 Screen Embedding Sequences for
Representing Mobile Tasks

GUI screens are not only useful data sources individually on their
own, but also as building blocks to represent a user’s task. A task in
an app, or across multiple apps, can be represented as a sequence
of GUI screens that makes up the user interaction trace for per-
forming this task using app GUIs. In this section, we conduct a
preliminary evaluation on the effectiveness of embedding mobile
tasks as sequences of Screen2Vec screen embedding vectors.

Similar to GUI screens and components, the goal of embedding
mobile tasks is to represent them in a vector space where more simi-
lar tasks are closer to each other. To test this, we recorded the scripts
of completing 10 common smartphone tasks, each with two varia-
tions that use different apps, using our open-sourced Sugilite [20]
system on a Pixel 2 XL phone running Android 8.0. Each script
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consists of a sequence of “perform action X (e.g., click, long click)
on the GUI component Y in the GUI screen Z”. In this preliminary
evaluation, we only used the screen context: we represented each
task as the average of the Screen2Vec screen embedding vectors
for all the screens in the task sequence.

Table 5 shows the 10 tasks we tested on, the two apps used for
each task, and the number of unique GUI screens in each trace used
for task embedding. We queried for the nearest neighbor within
the 20 task variations for each task variation, and checked if the
model could correctly identify the similar task that used a different
app. The Screen2Vecmodel achieved a 18/20 (90%) accuracy in this
test. In comparison, when we used the TextOnly model for task
embedding, the accuracy was 14/20 (70%).

While the task embedding method we explored in this section is
quite primitive, it illustrates that the Screen2Vec technique can be
used to effectively encode mobile tasks into the vector space where
semantically similar tasks are close to each other. For the next steps,
we plan to further explore this direction. For example, the current
method of averaging all the screen embedding vectors does not
consider the order of the screens in the sequence. In the future,
we may collect a dataset of human annotations of task similarity,
and use techniques that can encode the sequences of items, such
as recurrent neural networks (RNN) and long short-term memory
(LSTM) networks, to create the task embeddings from sequences
of screen embeddings. We may also incorporate the Screen2Vec
embeddings of the GUI components that were interacted with (e.g.,
the button that was clicked on) to initiate the screen change into
the pipeline for embedding tasks.

4 POTENTIAL APPLICATIONS
This section describes several potential applications where the new
Screen2Vec technique can be useful based on the downstream
tasks described in Section 3.

Screen2Vec can enable new GUI design aids that take advantage
of the nearest neighbor similarity and composability of Screen2Vec
embeddings. Prior work [9, 13, 16] has shown that data-driven tools
that enable designers to curate design examples are useful for inter-
face designers. Unlike [9], which uses a content-agnostic approach
that focuses on the visual and layout similarities, Screen2Vec con-
siders the textual content and app meta-data in addition to the
visual and layout patterns, often leading to different nearest neigh-
bor results as discussed in Section 3.1. This new type of similarity
results will also be useful when focusing on interface design beyond
just visual and layout issues, as the results enable designers to query
for example designs that display similar content or screens that are
used in apps in a similar domain. The composability in Screen2Vec
embeddings enables querying for design examples at a finer granu-
larity. For example, suppose a designer wishes to find examples for
inspiring the design of a new checkout page for app A. They may
query for the nearest neighbors of the synthesized embedding App
A’s order page + (App B’s checkout page − App B’s order page).
Compared with only querying for the nearest neighbors of App
B’s checkout page, this synthesized query encodes the interaction
context (i.e., the desired page should be the checkout page for App
A’s order page) in addition to the “checkout” semantics.

The Screen2Vec embeddings can also be useful in generative
GUI models. Recent models such as the neural design network
(NDN) [18] and LayoutGAN [19] can generate realistic GUI lay-
outs based on user-specified constraints (e.g., alignments, relative
positions between GUI components). Screen2Vec can be used in
these generative approaches to incorporate the semantics of GUIs
and the contexts of how each GUI screen and component gets used
in user interactions. For example, the GUI component prediction
model can estimate the likelihood of each GUI component given
the context of the other components in a generated screen, provid-
ing a heuristic of how likely the GUI components would fit well
with each other. Similarly, the GUI screen prediction model may be
used as a heuristic to synthesize GUI screens that would better fit
with the other screens in the planned user interaction flows. Since
Screen2Vec has been shown effective in representing mobile tasks
in Section 3.3, where similar tasks will yield similar embeddings,
one may also use the task embeddings of performing the same
task on an existing app to inform the generation of new screen
designs. The embedding vector form of Screen2Vec representa-
tions would make them particularly suitable for use in the recent
neural-network based generative models.

Screen2Vec’s capability of embedding tasks can also enhance
interactive task learning systems. Specifically, Screen2Vec may
be used to enable more powerful procedure generalizations of the
learned tasks. We have shown that the Screen2Vecmodel can effec-
tively predict screens in an interaction trace. Results in Section 3.3
also indicated that Screen2Vec can embed mobile tasks so that the
interaction traces of completing the same task in different apps will
be similar to each other in the embedding vector space. Therefore,
it is quite promising that Screen2Vec may be used to generalize a
task learned from the user by demonstration in one app to another
app in the same domain (e.g., generalizing the procedure of order-
ing coffee in the Starbucks app to the Dunkin’ Donut app). In the
future, we plan to further explore this direction by incorporating
Screen2Vec into open-sourced mobile interactive task learning
agents such as our Sugilite system [20].

5 LIMITATIONS AND FUTUREWORK
There are several limitations of our work in Screen2Vec. First,
Screen2Vec has only been trained and tested on Android app GUIs.
However, the approach used in Screen2Vec should apply to any
GUI-based apps with hierarchical-based structures (e.g., view hier-
archies in iOS apps and hierarchical DOM structures in web apps).
We expect embedding desktop GUIs to be more difficult than mobile
ones, because individual screens in desktop GUIs are usually more
complex with more heterogeneous design and layout patterns.

Second, the Rico dataset we use only contains interaction traces
within single apps. The approach used in Screen2Vec should gener-
alize to interaction traces across multiple apps. We plan to evaluate
its prediction performance on cross-app traces in the future with an
expanded dataset of GUI interaction traces. The Rico dataset also
does not contain screens from paid apps, screens that require special
accounts/privileges to access to (screens that require free accounts
to access are included when the account registration is readily avail-
able in the app), or screens that require special hardware (e.g., in the
companion apps for smart home devices) or specific context (e.g.,
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Task Description App 1 Screen Count App 2 Screen Count
Request a cab Lyft 3 Uber 2
Book a flight Fly Delta 4 United Airlines 4
Make a hotel reservation Booking.com 7 Expedia 7
Buy a movie ticket AMC Theaters 3 Cinemark 4
Check the account balance Chase 4 American Express 3
Check sports scores ESPN 4 Yahoo! Sports 4
Look up the hourly weather AccuWeather 3 Yahoo! Weather 3
Find a restaurant Yelp 3 Zagat 4
Order an iced coffee Starbucks 7 Dunkin’ Donuts 8
Order takeout food GrubHub 4 Uber Eats 3

Table 5: A list of 10 tasks we used for the preliminary evaluation of using Screen2Vec for task embedding, along with the apps
used and the count of screens used in the task embedding for each variation.

pages that are only shown during events) to access. This limitation
of the Rico dataset might affect the performance of the pre-trained
Screen2Vecmodel on these underrepresented types of app screens.

A third limitation is that the current version of Screen2Vec does
not encode the semantics of graphic icons that have no textual in-
formation. Accessibility-compliant apps all have alternative texts
for their graphic icons, which Screen2Vec already encodes in its
GUI screen and component embeddings as a part of the text em-
bedding. However, for non-accessible apps, computer vision-based
(e.g., [8, 30]) or crowd-based (e.g., [45]) techniques can be helpful
for generating textual annotations for graphic icons so that their
semantics can be represented in Screen2Vec. Another potentially
useful kind of information is the rules and examples in GUI design
systems (e.g., Android Material Design, iOS Design Patterns). While
Screen2Vec can, in some ways, “learn” these patterns from the train-
ing data, it will be interesting to explore a hybrid approach that can
leverage their explicit notions. We will explore incorporating these
techniques into the Screen2Vec pipeline in the future.

6 RELATEDWORK
6.1 Distributed Representations of Natural

Language
The study of representing words, phrases, and documents as math-
ematical objects, often vectors, is central to natural language pro-
cessing (NLP) research [32, 42]. Conventional non-distributed word
embedding methods represent a word using a one-hot representa-
tion where the vector length equals the size of the vocabulary, and
only one dimension (that corresponds to the word) is on [42]. This
representation does not encode the semantics of the words, as the
vector for each word is perpendicular to the others. Documents
represented using a one-hot word representation also suffer from
the curse of dimensionality [3] as a result of the extreme sparsity
in the representation.

By contrast, a distributed representation of a word represents
the word across multiple dimensions in a continuous-valued vector
(word embedding) [4]. Such distributed representations can capture
useful syntactic and semantic properties of the words, where syn-
tactically and semantically related words are similar in this vector
space [42]. Modern word embedding approaches usually use the
language modeling task. For example, Word2Vec [32] learns the

embedding of a word by predicting it based on its context (i.e.,
surrounding words), or predicting the context of a word given the
word itself. GloVe [37] is similar to Word2Vec on a high level, but
focuses on the likelihood that each word appears in the context
of other words with in the whole corpus of texts, as opposed to
Word2Vec which uses local contexts. More recent work such as
ELMo [38] and BERT [11] allowed contextualized embedding. That
is, the representation of a phrase can vary depending on a word’s
context to handle polysemy (i.e., the capacity for a word or phrase
to have multiple meanings). For example, the word “bank” can have
different meanings in “he withdrew money from the bank” versus
“the river bank”

While distributed representations are commonly used in natu-
ral language processing, to our best knowledge, the Screen2Vec
approach presented in this paper is the first to seek to encode the
semantics, the contexts, and the design patterns of GUI screens and
components using distributed representations. The Screen2Vec
approach is conceptually similar to Word2Vec on a high level—
like Word2Vec, Screen2Vec is trained using a predictive modeling
task where the context of a target entity (words in Word2Vec, GUI
components and screens in Screen2Vec) is used to predict the
entity (known as the continuous bag of words (CBOW) model in
Word2Vec). There are also other relevant Word2Vec-like approaches
for embedding APIs based their usage in source code and software
documentations (e.g., API2Vec [35]), and modeling the relation-
ships between user tasks, system commands, and natural language
descriptions in the same vector space (e.g., CommandSpace [1]).

Besides the domain difference between our Screen2Vec model
and Word2Vec and its follow-up work, Screen2Vec uses both a
(pre-trained) text embedding vector and a class type vector, and
combines them with a linear layer. It also incorporates external
app-specific meta-data such as the app store description. The hierar-
chical approach allows Screen2Vec to compute a screen embedding
with the embeddings of the screen’s GUI components, as described
in Section 2. In comparison, Word2Vec only computes word embed-
dings using word contexts without using any other meta-data [32].

6.2 Modeling GUI Interactions
Screen2Vec is related to prior research on computationally mod-
eling app GUIs and the GUI interactions of users. The interaction
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mining approach [10] captures the static (UI layout, visual features)
and dynamic (user flows) parts of an app’s design from a large
corpus of user interaction traces with mobile apps, identifies 23
common flow types (e.g., adding, searching, composing), and can
classify the user’s GUI interactions into these flow types. A similar
approach was also used to learn the design semantics of mobile
apps, classifying GUI elements into 25 types of GUI components,
197 types of text buttons, and 135 types of icon classes [30]. App-
stract [12] focused on the semantic entities (e.g., music, movie,
places) instead, extracting entities, their properties, and relevant ac-
tions frommobile app GUIs. These approaches use a smaller number
of discrete types of flows, GUI elements, and entities to represent
GUI screens and their components, while our Screen2Vec uses
continuous embedding in a vector space for screen representation.

Some prior techniques specifically focus on the visual aspect of
GUIs. The Rico dataset [9] shows that it is feasible to train a GUI
layout embedding with a large screen corpus, and retrieve screens
with similar layouts using such embeddings. Chen et al.’s work [8]
and Li et al.’s work [29] show that a model can predict semantically
meaningful alt-text labels for GUI components based on their visual
icon. Screen2Vec provides a more holistic representation of GUI
screens by encoding textual content, GUI component class types,
and app-specific meta-data in addition to the visual layout.

Another category of work in this area focuses on predicting GUI
actions for completing a task objective. Pasupat et al.’s work [36]
maps the user’s natural language commands to target elements on
web GUIs. Li et al.’s work [28] goes a step further by generating
sequences of actions based on natural language commands. These
works use a supervised approach that requires a large amount
of manually-annotated training data, which limits its utilization.
In comparison, Screen2Vec uses a self-supervised approach that
does not require any manual data annotation of user intents and
tasks. Screen2Vec also does not require any annotations of the GUI
screens themselves, unlike [46] which requires additional developer
annotations as meta-data for GUI components.

6.3 Interactive Task Learning
Understanding and representing GUIs is a central challenge in GUI-
based interactive task learning (ITL). When the user demonstrates
a task in an app, the system needs to understand the user’s action
in the context of the underlying app GUIs so that it can general-
ize what it has learned to future task contexts [23]. For example,
Sugilite represents each app screen as a graph where each GUI
component is an entity [24]. Properties of GUI components, their hi-
erarchical relations, and the spatial layouts are represented as edges
in the graph. This graph representation allows grounding natural
language instructions to GUIs [23, 24] with graph queries, allow-
ing a more natural end user development experience [33]. It also
supports personal information anonymization on GUIs [21]. How-
ever, this graph representation is difficult to aggregate or compare
across different screens or apps. Its structure also does not easily
fit into common machine learning techniques for computationally
modeling the GUI tasks. As a result, the procedure generalization

capability of systems like Sugilite is limited to parameters within
the same app and the same set of screens.

Some other interactive task learning systems such as Vasta [40],
Sikuli [44], and Hilc [14] represent GUI screens visually. This ap-
proach performs segmentation and classification on the video of the
user performing GUI actions to extract visual representations (e.g.,
screenshot segments/icons) of GUI components, allowing replay
of actions by identifying target GUI components using computer
vision object recognition techniques. This approach supports gen-
eralization based on visual similarity (e.g., perform an action on all
PDF files in a file explorer because they all have visually similar
icons). However, this visual approach is limited by its lack of seman-
tic understanding of the GUI components. For example, the icon of
a full trash bin is quite different from an that of an empty one pixel
count wise, but they should have the same meaning when the user
intent is “open the trash bin”. The icon for a video file can be similar
to that of an audio file (with the only difference being the tiny “mp3“
and “mp4“ at a corner), but the system should differentiate them in
intents like “select all the video files”.

The Screen2Vec representation presented in this paper encodes
the textual content, visual layout and design patterns, and app-
specific context of GUI screens in a distributed vector form that
can be used across different apps and task domains. We think this
representation can be quite useful in supplementing the existing
graph and visual GUI representations in ITL systems. For example,
as shown in Section 3.3, sequences of Screen2Vec screen embed-
ding can represent tasks in a way that allows the comparison and
retrieval of similar tasks among different apps. The results in Sec-
tion 3.3 also suggest that the embedding can help an ITL agent
transfer procedures learned from one app to another.

7 CONCLUSION
We have presented Screen2Vec, a new self-supervised technique
for generating distributed semantic representations of GUI screens
and components using their textual content, visual design and lay-
out patterns, and app meta-data. This new technique has been
shown to be effective in downstream tasks such as nearest neighbor
retrieval, composability-based retrieval, and representing mobile
tasks. Screen2Vec addresses an important gap in computational
HCI research, and could be utilized for enabling and enhancing
interactive systems in task learning (e.g., [25, 40]), intelligent sug-
gestive interfaces (e.g., [7]), assistive tools (e.g., [5]), and GUI design
aids (e.g., [17, 41]).
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