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Abstract
Recent advances in AI-based code generation tools such as GitHub Copilot show great promise in assisting
developers with programming tasks. However, there are few empirical studies that used objective measures
to investigate the behavior of programmers when validating and repairing Copilot-generated codes. In this
work, we conducted a user study with 9 participants using eye tracking and IDE tracking to characterize how
programmers handle errors when using Copilot. We found that developers had greater cognitive effort, but
were less frustrated in the editing phase of the code compared to in the understanding and navigation phases.
Programmers frequently used prompts to generate code during the repair process and accepted most of the
generated code, yet they scrutinized the prompt and code for validation after accepting the code. Finally,
participants found several IDE features such as Run, Debug, and GoToDeclaration helpful for code validation.
Keywords: GitHub Copilot, code generation, programmer behavior, eye tracking, IDE tracking.

1 Introduction
Automated code generation has been a dream of programmers for decades [1], and has attracted many
researchers in the communities of artificial intelligence (AI), programming language (PL), and software
engineering (SE). Recently, breakthroughs in transformer-based [2] large language models (LLMs)
such as GPT-3 [3] offer great possibilities for its realization. GPT-3 has shown an impressive effect on
text generation and provides the basis for a new era of code generation [4]. For example, OpenAI
Codex [5], a descendant of GPT-3 fine-tuned on 54 million public GitHub repositories, demonstrated
promising programming performance: solving 29% of unseen Python programming tasks with only one
sample per problem and 70.2% with 100 samples [6]. Recently, GitHub Copilot [7], a programming
editor extension powered by OpenAI Codex, has attracted public attention and adoption [8].

The emergence of AI-generated code means a new task for programmers: integrating AI-generated
code into existing codebases. The usual situation is that a programmer asks the AI tool to generate
a block of code (perhaps 10–20 lines); then the programmer must validate that code to ensure that
it does not contain errors and will integrate correctly with the context of the code. At present,
this process of validating AI-generated code is not well understood. AI tools may generate different
types of errors than fellow humans, and unlike humans, the AI is not able to articulate the rationale
behind its decisions, so the debugging strategy people follow may be different from when debugging
human-written code. It is important to know how programmers understand and repair errors in
AI-generated code to help guide the development of the underlying AI models and their interfaces.
Various studies have evaluated the performance of AI-based code generators against benchmarks [6], [9]
and specific scenarios [10], [11]. Other studies have provided early evidence about the behavior patterns
of programmers when using Copilot [12], [13]. While they are intriguing early evidence, more light
needs to be shed on the process of human-AI collaboration and how it differs from past work processes.

In this paper, we present an empirical study of programmer behaviors during the validation of
AI-generated code using eye tracking and IDE tracking. The purpose of our study was to investigate
the programmers’ cognitive workload, validating strategies, and collaboration with GitHub Copilot [7] in
the processes. We conducted studies with 9 participants, in which they needed to validate and integrate
Copilot-generated codes into three different software projects. In the study, participants validated and re-
paired errors with the help of Copilot. We collected the eye-tracking data and IDE behavior data using a
plugin for IntelliJ IDEA [14] that we developed. The study investigated the following research questions:
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• RQ1: How much cognitive workload do programmers have during the error discovery and repair
process?

• RQ2: What strategies do programmers use to handle errors in code generated by Copilot?
• RQ3: What is the role of Copilot in the process of handling errors in Copilot-generated codes?

2 Related Work
2.1 AI-Enabled Code Generation

Recently, advances in deep learning, especially LLMs such as GPT-3 [3], have fueled the development of
automated code generation. For example, AlphaCode [15], which focused on competitive programming
problems that require deeper reasoning, achieved on average a ranking of the top 54.3% in popular
competitions. GitHub Copilot [7], which is based on Codex [5], a fine-tuned version of GPT-3, has
shown great performance in automatic code generation. It has greatly improved developers’ productivity
and programming speed [16], which motivated us to research the collaboration of programmers with it.

Previous studies have evaluated their performance on benchmark datasets with various problem-
solving scenarios. For example, Chen et al. [6] used HumanEval to measure the functional correctness
of Codex synthesized programs from docstrings. Nguyen et al. [9] used LeetCode questions to create
queries for Copilot and evaluated the correctness of the corresponding solutions. Pearce [11] evaluated
the performance of LLM-based code tools to help repair human-generated bugs. Finnie-Ansley et al.
[10] measured the ability of Codex in introductory programming education.

However, these studies focused mainly on generation performance. It is still unknown how users
interact with the tools. Current empirical studies are only based on direct observations of Copilot
usage, lack concrete behavior data for more objective quantitative analysis, and did not focus on
understanding the validation process. Our study bridges this gap in the literature by incorporating eye
tracking and IDE behavior tracking to characterize programmers’ code validation process with Copilot.

2.2 Eye Tracking for Software Engineering
Eye tracking is a process of capturing human visual attention by measuring eye gaze data [17]. It has
been widely used in HCI to understand and model human cognitive processes [18], [19]. Eye-related
features, such as blink rate, pupillary response, and fixation information, can serve as indicators of
mental effort in various activities, including SE tasks [20], [21].

Eye tracking technology has been used in software engineering research to study human behavior
during programming since Crosby et al. [22] first studied the eye movements of programmers in 1990.
A survey by Sharafi et al. [17] chronicles up to 2015 and is expanded by Obaidellah et al. [23]. Eye
tracking data is widely recognized to represent the attention given to different parts of the source code
by humans. Previous work has shown that a longer fixation time of an area indicates rich information
and greater complexity of the element [24], [25]. An exemplary body of work is led by Sharifi et al.,
with advances in both knowledge of how programmers read code and practical uses for this knowledge
[26], [27]. Eye tracking in SE is often used to complement and enhance behavior tracking through an
integrated development environment (IDE) [24]. The idea is to monitor both what developers look at
and what they do (e.g., mouse clicks, file navigation, and attempts to compile) [28]–[31].

2.3 Human-AI Collaboration in Software Development
There were some previous empirical studies on the usage of GitHub Copilot. Vaithilingam et al.
[12] conducted a user study to understand how programmers use and perceive Copilot. Barke et
al. [13] presented a grounded theory analysis of how programmings interacted with Copilot through
observations on their solving of programming tasks in four languages. However, these works were
summarized mainly through qualitative research methods such as manual observation and interviews.
The lack of quantitative analysis and objective methods to measure programmer behaviors (e.g., eye
tracking and IDE behavior logging) present a gap in the literature.

Beyond Copilot, in relation to other LLM-based code generation tools, Jiang et al. [32] conducted
a user study in which participants applied GenLine to programming tasks. GenLine is different from
Copilot because they explicitly invoke a command in a text editor. Weisz et al. [33] interviewed 11
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IBM software engineers on a programming language translation tool about their tolerance degree of
imperfections and ways to aid in debugging errors.

2.4 Debugging Strategies of Software Developers
Another closely related area is the debugging strategies of software developers. The study of how
programmers comprehend, write, and debug codes is a long-standing topic in SE research [34], [35].
Human debugging strategies shed light on the design of debugging tools. Moritz Beller et al. [36]
found the limited usage of IDE features and proposed to improve the Eclipse debugger based on
observation. Lawrance et al. [37] use information foraging theory to construct a model that predicts
programmer navigation choices during debugging, suggesting that a debugging tool should support
scent following through the information patch by providing proximal cues. Debugging strategies also
contribute to the validation of debugging tools [38]. Many previous works have evaluated the validity
of debugging tools by testing whether they fit in the debugging process [39]–[41].

However, our domain is fundamentally different because the study of debugging strategies focuses
on debugging codes either generated by programmers themselves or their human colleagues, which
are quite different from understanding and validating codes generated by AI models. AI-generated
codes are also different from those generated by humans. The results of a previous empirical study
showed that Copilot-generated code is not as compact as human-created code [9]. A study also found
that the Copilot-generated code is of lower quality than the human-created code [42]. We suspect
that the error handling strategies used in human-AI collaboration in software development might share
some similar characteristics to those in error handling for other human-AI interaction contexts, e.g.,
conversational agents [43] qualitative coding [44], and natural language data queries [45].

3 Study Design
We designed a lab study to understand how users validate the code generated by GitHub Copilot. In
our study, we used three programming tasks (details in Section 3.1). For each task, we prepare a
codebase with several declared but not implemented classes/methods. For each of them, we came
up with prompts that described its functionality. We delibrately chose prompts for which Copilot will
generate codes with representative errors of different types, as described in Section 3.1).

The codebase, along with the prompts and Copilot-generated code, was provided to each participant
to validate and repair the errors (so each user started from exactly the same codebase). The detailed
protocol of our study is described in Section 3.4.

6125 Parameter
Value

6112 Wrong Component

Figure 1. A bug example from subtask 3.2: overload constructors.

3.1 Programming Tasks
We used three Java programming tasks in different software engineering scenarios: algorithm design,
graphical user interface (GUI) design, and object-oriented programming (OOP).
• Task 1. Kakaroma (Algorithm Design): A LeetCode-like task that utilizes dynamic programming

to find a path in a square array that has the minimum sum of numbers. The entire program was
written by Copilot from scratch. This task was adapted from an assignment from a computer
science undergraduate course [46].

N. Tang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 3/15



• Task 2. Calculator (GUI): A calculator app written with the Java GUI programming API, consisting
of a front-end that includes a text interface and operating buttons, as well as back-end logic. The
GUI layout code and the listeners for front-end buttons were generated by Copilot.

• Task 3. ZooSystem (OOP): A zoo management system that has various animal classes with
inheritance relationships (e.g., animal-mammal-lion). Several management functions, such as add,
delete, search, and display animals, are generated by Copilot. This task was adapted from an
assignment from an undergraduate computer science course [47].
We categorized these errors based on the taxonomy in Software Testing Technique [48]. The error

statistics for three tasks are in Table 1.

Table 1. Taxonomy of the bugs existing in programming tasks based on [48].

Task No. Subtask Bug index [48] Bug category [48]

Kakaroma

1.1 create table 231x Missing Case

1.2 reconstruct path
3226.4 String Manipulation-Insertion
3126 Illogic Predicates
231x Missing Case

Calculator 2.1 GUI layout 6125 Parameter Value
2.2 set listener 614x Initialization State

ZooSystem

3.1 set attribute value 6125 Parameter Value

3.2 overload constructors 6112 Wrong Component
6125 Parameter Value

3.3 dynamic array 4164 Should be Dynamic Resource
3.4 system input method 6112 Wrong Component
3.5 attribute name 413x Initial, Default Values

For example, Fig. 1 shows bugs in the code generated by Copilot in subtask 3.2, with the prompt
”create a constructor for the Lion class that only takes name as input”. The code has both bug type
6125 “Parameter Value” (e.g., the conservation status should be “Vulnerable” by default), and bug
type 6112 “Wrong Component” (the lions do not have features, it should be fur color extending from
the superclass Mammal).

3.2 Study Settings
We conducted the study in person in a usability lab on a computer with a 27-inch monitor and a Tobii
Pro Fusion [49] eye tracker with the sampling frequency set at 60 Hz. The user interacted with the
code and Copilot through IntelliJ IDEA 2022.1.4 running the Copilot plugin and our data collector
plugin (Section 3.5). We set the font size of the IDE at 20 points to mitigate the impact of the
drifting effect of the eye tracker on the location of the code tokens corresponding to the eye gazes. To
mitigate the influence of light intensity on eye tracking, all study sessions were held in the same room
with all doors and windows closed and the same ceiling light on.

3.3 Participants
We recruited 9 participants (5 female, 4 male) from the local university community. 2 participants were
undergraduate students, and 7 were graduate students. 1 of them had no programming experience in
Java before, 4 of them had just taken an introductory course on Java programming, and 4 had 1∼3
years of programming experience. Only 2 participants had used Copilot prior to our study. Participants
received a $30 Amazon Gift Card as compensation for their time.

3.4 Protocol
The study took approximately two hours per participant. After signing the consent form and filling out
the pre-study questionnaire that collected the participant’s demographic data, we told the participant
about the overall objective and process of the study, followed by a 10-minute tutorial on the usage of
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IntelliJ IDEA and Copilot. We also gave a short instruction on interacting with the eye tracker (e.g.,
refraining from major head movements).

For each task, the participant read the instruction describing the background and required tasks
first and calibrated the eye tracker. The participant then had 20 minutes to perform the task. To
narrow down the debugging strategy for specific errors, participants were asked to self-report when they
thought they had completed a subtask. Participants were allowed to ask clarification questions to the
experimenter, but were not allowed to browse the Internet. After completing each task, participants
were asked to complete a NASA TLX form [50] to self-report their cognitive workload. In the end,
participants shared their experience performing the tasks in a 15-minute semi-structured interview.
The interview included questions regarding participants’ bug validating and repairing strategies, usage
of Copilot functions and IDE features, as well as their different feelings about debugging Copilot-
generated code and code written by humans. We used Grounded Theory to analyze our qualitative
data. We open-coded valuable insights from the interview transcripts and experimenter observations
and conducted axial coding to organize them into our findings.

3.5 Data Collection Setup
To support the analysis of programmer behaviors, we developed a plugin for IntelliJ IDEA for IDE
tracking and eye tracking. We also made screen recordings with timestamps for study sessions for
subsequent analysis. The detail of the data collected is summarized in the following sections.

3.5.1 IDE Tracking
Our plugin collects the following information via IDE tracking. All behaviors are tracked with their
location (path, line, column) and timestamp for further analysis and calibration. They are organized in
XML format and an example is shown in Fig. 2.

Figure 2. An example of IDE tracking data format. The left part is IDE features, the middle part is keyboard
typing, and the right part is file logging.

IDE Features Our plugin recorded any IDE features used during programming. These include
(1) IDE support edit: ReformatCode, CommentByLineComment, Copy, Cut, Paste; (2) run and
debug action: RunClass,Stop, Debug, ToggleLineBreakPoint; (3) file action: Open, SaveAll,
NewFile; (4) find/replace and code inspection: Find, GotoDeclaration, CompareTwoFiles. The
IDE features usage log also included the actions of Copilot usage, such as copilot.applyInlays
representing accepting the code generated by Copilot.

Keyboard Actions Our plugin collected all code edits using the keyboard. It could also detect
keyboard actions with special functions: (1) editing function, such as Enter, Tab, Backspace, Delete;
(2) navigation function like Left, Right, Up, and Down; (3) selection function, such as SelectWord,
SelectLine. In addition, mouse scrolling behaviors (vertical/horizontal) were recorded.

File Logging In order to recover any code file at any timestamp during programming tasks, we
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designed a file logging mechanism that logs the whole content of the code file when (1) the programmer
opens/closes a code file or (2) a code file is edited during the past 1 second. Our plugin also records
the console output when the programmer executes the code.

3.5.2 Eye Tracking
Our plugin collects raw gaze data and maps them to semantic source code entities, such as tokens
and nodes in abstract syntax trees (ASTs). The sampling frequency of the eye tracker is 60 Hz. A
sample of gaze data and the calculated semantic source code entities is shown in Fig. 3.

Figure 3. An example of raw gaze data collected from the eye tracker, which contains the computed location,
token, as well as its AST hierarchy (PSI).

Raw Gaze Data The raw data received from the eye tracker include: (1) (x, y ) relative coordinates
on the screen multiplied by the width and height of the screen, as well as (2) left/right pupil diameters
and their corresponding data validities. In the Tobii Pro SDK, each data relating to the eye is provided
with its own validity code. Invalid data were excluded from our analysis based on the recommendation
of Tobii Pro [51]. Each gaze is recorded with a timestamp.

Location, Token & AST To extract semantic information from gazes, such as their corresponding
code tokens, we first calculated the relative location in the code editor and then mapped it to a specific
location (line, column) of the code file and its corresponding token. Finally, we searched for the token
in all the parent nodes of the AST with the Program Structure Interface (PSI) [52] in IntelliJ IDEA.

Fixation & Saccade Fixation is eye stabilization at one location for a period of time. We extracted
gazes on the same token with durations longer than 200 ms as fixations. We also take the transitions
between two fixations within 50 ms as saccades [17].

4 Study Result
This section describes the quantitative and qualitative results of our study based on our three RQs.
We summarize the descriptive statistics on the overall performance of the users in Table 2.

Table 2. Overall performance of users.

Task No. Subtask Avg. time spent (min.) Success rate

Kakaroma 1.1 create table 8.13 0.88
1.2 reconstruct path 11.75 0.25

Calculator 2.1 GUI layout 20.38 0.5
2.2 set listener 5 1

ZooSystem

3.1 set attribute value 3.13 0.88
3.2 overload constructors 6.38 1
3.3 dynamic array 9 0.63
3.4 system input method 2.6 1
3.5 attribute name 3.66 0.67
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4.1 Programming Activities Classification
To study the programming activities of the participants, we classified their behaviors using the methods
described by Minelli et al. [53]. We measured the time developers spent understanding, navigating,
and editing source code based on our collected data.

A researcher quantitatively annotated the programmer’s behaviors as understanding, navigation,
and editing events based on tracked IDE behaviors. To illustrate an example of programming activities
classification on the timeline, we show a glance at a 400-second session in Fig. 4.

Understanding Navigation Editing

Time (s)

0 400100 200 300

Figure 4. A glance of programming activities classification. This session lasted about 400 seconds.

Navigation The code navigation behaviors (orange part in Figure 4) refer to the search and
locating of the code. There are two types of navigation behaviors: (1) Across-file navigation: includes
actions such as opening, closing, or changing the selection of code files. (2) Within-file navigation:
includes vertical/horizontal scrolling within one file, the use of relevant IDE features (e.g., code
inspection and find & replace as defined in Table 5), and keyboard actions (e.g., arrow keys).

Editing We tracked code editing behaviors (blue part in Figure 4) based on recorded keystrokes,
the use of relevant IDE features (editor selection, IDE support editing as defined in Table 5), and the
use of Copilot to generate or edit codes.

Understanding The understanding behaviors (green part in Figure 4) represent the time that
users spend looking at the code without navigating or editing behaviors.

On average, participants spent 85.7% of their time in the understanding phase, 10.3% in the
navigation phase, and 4.0% in the editing phase.

4.2 Workload Comparison (RQ1)
To measure the workload of the programmer when validating the code generated by Copilot, we used
both eye-tracking and self-reported questionnaires and compared their results. Our findings suggest
that programmers have a higher visual workload in the editing phase compared to the understanding
and navigation phases, and the visual workload measured by pupil diameters is negatively correlated
with their self-reported frustration levels.

In eye tracking, pupil diameters were commonly used to measure the visual workload of participants
and were known to be correlated with cognitive workload [17]. Larger pupil diameters indicate greater
visual effort [54]. Our data recorded the pupil sizes of the participants when performing our tasks, as
shown in Fig. 5. We calculated the correlation between the pupil diameters of the left and right eyes
for all users. The data suggest that they are highly correlated (Pearson correlation 0.958). Therefore,
we use the data on the average pupil diameter of the left and right eyes for further analysis [55].
Following best practice, when processing the pupil diameter data, we use 2 mm as the threshold to
filter out the noise caused by blinking (0.064% of the collected data) [56].

Time spent (ms)

Pu
pi

l D
ia

m
et

er
 (m

m
)

Left pupil diameter Right pupil diameter

Figure 5. A glance of left and right pupil diameters over time.

We aggregated the pupil diameters of user gazes on three programming activities and present the
results in box plots for different programming tasks (Fig. 6). Participants’ workload in the editing
phase, measured by pupil diameters, is greater than that in the understanding (4.213 > 4.073, p <
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Table 3. Results of self-reported workload in NASA-TLX questionnaires. Top: Percentage of self-reported
high (or very high) understanding, navigation, and editing effort. Bottom: average ratings of all participants
over three tasks. Regarding performance, a lower score means perfect and a higher score means failure.

Category Metric Kakamora Calculator ZooSystem

Activities
High understanding effort (%) 55.6 11.1 77.8

High navigation effort (%) 66.7 33.3 44.4
High editing effort (%) 55.6 44.4 11.1

NASA TLX

Mental Demand 7.1 6.9 5.4
Physical Demand 3.3 3.7 3.2
Temporal Demand 5.9 5.9 4.6

Performance 5.4 6 5
Effort 6.4 7 5.7

Frustration 4.8 5.8 4.4

0.001) and navigation phases (4.213 > 4.07, p < 0.001). This difference is consistent in all three tasks
(Kakamora: 4.312 > 4.22/4.208, p < 0.05; Calculator: 4.161 > 3.937/3.954, p < 0.001; ZooSystem:
4.16 > 4.046/4.035, p < 0.01). All p-values are computed by the Student’s t-test. There is no
significant difference in the pupil diameter of users between the navigation and understanding phases.

Task1. Kakamora Task2. Calculator Task3. ZooSystemAll

Figure 6. Participants’ pupil diameters in understanding, navigation, and editing phases.

We asked all users to self-report their workload after finishing each task using a NASA TLX
questionnaire and report their effort in three programming activities. The results are summarized in
Table 3. We computed the Pearson correlation between pupil diameters in three programming activities
with self-reported data. The result shows that frustration in NASA TLX is negatively correlated with
visual efforts measured by pupil diameters in all three activities (-0.455/-0.466/-0.462, p < 0.05). The
other pairs of relationships were not statistically significant.

4.3 Validating Strategy (RQ2)
In this section, we explore the debugging strategies of programmers by analyzing token fixes, as well
as the use of IDE features and Copilot. We found that programmers had a high concentration on the
prompt used in Copilot and frequently switched between the comment prompts and code. Programmers
often used the run, debug, and GotoDeclaration features, which were also often combined with a
fixation on identifiers. Furthermore, many interactions with Copilot were continuous, while part of
them are often related to deleting the code that was just generated.

4.3.1 Fixations in Programming Tasks
The average fixation count (FC) of a participant in a task is 525.4ms, with an average fixation duration
(AFD) of 467 ms. The total fixation time per task is 244.4 seconds, which reflects the visual attention
of the participants. On average, a participant triggered 84.1 saccades per task with an average saccade
length (ASL) of 96.67 pixels, which reflects the search effort of programmers and contains limited
visual perception. Since fixation is related to information processing and is important for eye tracking
analysis, we analyze their patterns with respect to abstract syntax tree (AST) structures in code to
study the programmers’ visual strategy of debugging. We aggregated the fixation time on different
token types, and counted the bigram of all users’ sequences of fixations by token types. An n-gram is
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a contiguous sequence of n items from a given sequence. The top-5 results are summarized in Table 4.
Among the different types of tokens, the identifiers and comments attracted the most fixations. All

comments here are prompts either given by us or written by participants to generate code (instead of
regular documentation) in our task setting. This reflects that (1) programmers had a high concentration
on understanding the prompts themselves (the 2nd most frequent bigram), and (2) programmers also
spent much of their time switching back and forth between the comment prompt and the generated
code (the 3rd and 4th most frequent bigrams).

4.3.2 Usage of IDE Features
We summarized the usage of the IDE features for three programming tasks in Table 5. We combined
features with similar functionalities together (e.g., Run, RunClass, and Rerun) and filtered out the
seldom used features, i.e., the total number of usage ≤ 5. The result shows that participants often
validated the codes generated by Copilot in two ways: running the class and using the debugger. But
the distribution of their usage differed in different tasks. In the interviews, the participants reported
that the use of the debugger was more useful in our algorithm design task, while tracking the bugs
according to the error message from running the class was more helpful to validate the GUI task. P7
describe their strategy as “eyeball code first and then run it to see error messages”.

We also examined the adjacent fixations just before or after the use of IDE features. The top-4
combinations were (GotoDeclaration, *identifier, GotoDeclaration), (*identifier, Resume), (*identifier,
StepOver), and (RunClass, *identifier). The element with * indicates the AST type of the token that
corresponds to the fixation.

4.3.3 Usage of Copilot
There were 302 copilot.applyInlays usages in total, which was more than any of the other IDE
features. We counted the trigrams of the mixture of Copilot usage and keyboard typing. The result
shows that almost all of the top-10 frequent trigrams are combinations of copilot.applyInlays,
EditorEnter, and EditorBackspace. In addition, 61.6% of these trigrams were continuous code
“generating–accepting” sequences, and the other 38.4% contain backspaces that deleted the generated
code. This reflects that the interaction between the programmer and Copilot is usually continuous,
with some cases where the generated code is quickly deleted by the developer.

4.4 Programmer-Copilot Collaboration (RQ3)
In this section, we explored the features of programmer-Copilot collaboration via the analysis of code
generation sources, code acceptance rate, and feedback from semi-structured interviews. We found
that users started to rely more on Copilot once they get familiar with Copilot. We also identified two
ways of collaboration between programmers and Copilot.

4.4.1 Collaboration Model
Participants found Copilot helpful during the debugging process, and 74% of the participants agreed
that the Copilot-generated code is reasonable. Copilot reduced the low efficiency and inconvenience
of switching windows and consulting the documentation. P6 said, “[Copilot] avoid the distraction of
switching windows”. Participants generally thought that the Copilot code looks similar to human-
written code in terms of style and quality. P1 said that “Code in the algorithm task is similar to
human-written one. Yet, codes generated in the Calculator and Zoo System tasks were not like those
written by humans because they involved some undefined features”.

Participants reported two ways of collaboration. First, most of the participants found that gen-
erating code by comments was a useful way to start from scratch for a block of code. However,
programmers need to thoroughly understand the task of writing an accurate natural language prompt.
P4 said “It takes some effort for me to think of the prompt” and P7 suggested that “using comment
that includes the context can generate code of higher quality”. Second, participants used Copilot to
repair minor bugs. Especially those who are not familiar with Java found that Copilot was useful for
fixing errors in syntax and data types. Participants preferred one-line-long generation over a large
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chunk of code as they found the latter “cumbersome” as it still required significant effort to understand
the meanings of the generated code. P4 said “I found it hard to accept Copilot generated code at
first because if it is intuitive, I can write on my own; if it is not, I have to read it”.

4.4.2 Reliance on Copilot
When Copilot was available, the programmers in our study tended to use it to validate and repair
the code. The code created during the study came from three sources: (1) Copilot, mainly via
copilot.applyInlays action. (2) IDE features in Table 5, such as copying and pasting. (3) Typing
on keyboards. We summarize the average number of instances of each type, the average number of
characters in the generated code, and the percentage of sources that generated the most characters
among all participants in Table 6. The result shows that Copilot generated the most number of
characters in our tasks. The result is aligned with our interview finding that Copilot often served as a
replacement for copy/paste actions. P8 said “I changed my approach. First, I saw if Copilot could
give me some useful suggestions, and then I validated them”.

Participants kept most of the model-generated code in the final code. We compared the model-
generated code and the final code texts in similarity (by Gestalt pattern matching) and distance (by
Levenshtein distance). Gestalt pattern matching measures the longest contiguous matching subse-
quence that contains no “junk” elements (e.g., blank line, white space). Levenshtein distance measures
the minimum number of single-character edits (insertions, deletions, or substitutions) required to change
one text to the other [57]. Our results show that the average Gestalt similarity between the model-
generated code and the final code is 0.77 (0.82/0.65/0.85 for each task). The average Levenshtein
distances between the model-generated code and the final code produced by the study participants
are 231.67, 703, and 425 for the three tasks (Kakaroma, Calculator, ZooSystem) respectively. The
initial lengths of code generated by Copilot are 1194, 2507, and 3551 for the three tasks respectively.

Three participants mentioned that Copilot changed their roles in the programming process. P7
said that “coder’s responsibility changed to guide Copilot writing something logically and coherently”.
Compared to writing code manually, collaborating with Copilot can help mitigate the bias in debugging
programmers’ own codes, as they may fall into the same trap all the time. Participants said that
they are more critical when validating and repairing Copilot-generated code. P5 said, “debugging with
Copilot was easier since it had a completely different thinking angle”.

5 Limitation and Future Work
As a preliminary empirical study, this work has presented several findings on how developers handle
errors when working with generative code models and provided implications for the design of future
AI-enabled programming support tools. However, there are still some limitations in the study and
many opportunities for future work to further validate and expand our findings.

First, we plan to conduct a controlled study to compare the user behaviors we observed in this
study with those when users perform the same tasks without Copilot. This will allow us to measure
the impact of using Copilot on user cognitive effort and directly compare user cognitive processes and
strategies when they use Copilot with those when they write code manually for the same tasks.

Second, the generalizability of our findings is threatened by the limited representation of participant
groups, task types, and bug types. To address this, we plan to conduct a more robust, more compre-
hensive, and larger-scale study in the future. For example, despite that we chose three representative
programming tasks that cover bugs from the algorithmic level to the component invocation level, we
could include more categories of bugs and categories of programming tasks. The limited time and lab
setting constrained the number of bugs and categories of tasks that we can include in our experiment.
In the future, we can conduct a longitudinal field study in which programmers participate for months
and build a large program at their own pace. Furthermore, many of our participants had no prior
experience using Copilot. Familiarity with Copilot may affect participants’ behaviors.

Lastly, there are also limitations to the nature of eye tracking. Eye trackers can capture what users
are looking at, but cannot reveal what and how the users think. To mitigate this risk, we integrate
self-report and semi-structured interviews to enhance our findings.
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Appendix
A Descriptive Statistics of Fixation Patterns, IDE Feature Usage, and Code

Generation Sources in the Study

Table 4. The Top-5 attention-focused tokens and AST types (PSI) measured by fixation time.

AST Type Fixation Time (s)

identifier 114.7
comment 65.72
literal 27.03

keyword 14.78
rbracket 3.77

2-Gram of AST Type Count

identifier, identifier 3702
comment, comment 2220
comment, identifier 899
identifier, comment 862
identifier, literal 651

Table 5. Count of IDE features usage in the three programming tasks accumulated from all users’ data.

Category Feature Kakaroma Calculator ZooSystem All

IDE Support Edit

Copy/Cut 60 19 65 144
Paste/Duplicate/Multiple 38 16 56 110

$Undo/$Redo 18 31 47 96
CommentByLineComment 1 3 3 7

Run Run/RunClass/Rerun 27 91 24 142
Stop 14 18 0 32

Debug

Debug/DebugClass 5 1 0 6
StepOver/Into/Out 9 0 0 9
ToggleLineBreakpoint 8 0 1 9

Resume 19 0 0 19

Find & Replace
ChooseLookup/ReplaceItem 12 16 28 56

Previous/NextWord 4 8 0 12
Find/SearchEverywhere 0 5 9 14

Code Inspection GotoDeclaration 12 8 15 35

File SaveAll 4 7 16 27

Copilot Usage copilot.applyInlays 41 183 78 302
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Table 6. Analysis of code generated sources: Copilot, IDE support features (e.g., paste), programmer typing.

Metric Source Kakaroma Calculator ZooSystem

# Usages of
Copilot 4.33 25.71 8.11

IDE Support 4.22 1.86 6
Typing 30 39.86 22.67

# Characters from
Copilot 332.78 1038.29 395.44

IDE Support 26.56 7.57 195.78
Typing 108.22 115.14 96.78

% Most Characters from
Copilot 77.8 66.7 66.7

IDE Support 0 0 11.1
Typing 22.2 33.3 22.2
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