
 

Supporting Co-adaptive Human-Agent 
Relationship through Programming by 
Demonstration using Existing GUIs

 
Abstract 
Intelligent agents have become an important new type 
of interface in the post-WIMP era. However, end users 
lack the capability to customize, appropriate and ex-
tend current agents. In this position paper, we describe 
our programming by demonstration (PBD) approach, 
which leverages the end users’ familiarity with existing 
apps’ GUIs by allowing them to demonstrate the de-
sired new behaviors of the agent using GUI objects in 
existing apps. We also outline challenges in providing 
the users with more expressive power and greater flexi-
bility for this approach, and propose a solution of using 
a multi-modal interface that combines verbal instruc-
tions with the demonstrations using the GUI. 
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Introduction 
Intelligent agents have rapidly gained popularity in re-
cent years – they can be found in devices from weara-
bles and phones to smart home speakers and cars. 
They usually interact with users through a conversa-
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tional user interface (CUI) and can act on behalf of us-
ers to perform computing tasks and to interact with ex-
ternal services. Compared with GUIs, CUIs are often 
more efficient (especially for tasks that require interact-
ing with multi-level menus or multiple apps), and are 
usable in contexts where direct manipulation is not con-
venient or possible (e.g., while driving). 

However, current agents provide little support for users 
to customize their behaviors and to extend their capa-
bilities. Many agents support some degree of personali-
zation in a few popular domains (e.g., music, news) by 
learning the user’s past behaviors and predicting the 
user’s preferences. Besides this, users have no way to 
teach the agent a new task, and have little control on 
how a task should be performed by the agent when 
they perceive a need for customization and automation 
such as in the case of cognitive overload [12].  

In our motivating study [9], we observed that since the 
users lack the capability to appropriate the agents, they 
often just adapt to the agents’ constraints by learning 
what tasks work reliably well, figuring out effective ut-
terances for triggering these tasks, and limiting their 
use of agents to only this small set of tasks (e.g., 
checking weather, setting alarms), instead of having a 
co-adaptive relationship with the agent. 

We envision intelligent agents playing an increasingly 
important role as the interfaces for computing tasks 
and services in the post-WIMP era. Therefore, our work 
seeks to empower end users with no programming ex-
pertise to customize how tasks should be performed by 
agents, and to teach agents new tasks. 

Our system uses a programming by demonstration ap-
proach that allows end user to create task automations 

by demonstrating using GUIs of existing mobile apps. 
This approach leverages the available app GUIs and 
more importantly, the user knowledge about how to 
manipulate these GUI objects to accomplish tasks.  

Instead of being invoked directly as interaction instru-
ments, GUI objects can form a vocabulary through 
which users can communicate their procedural 
knowledge about tasks, so the objects become building 
blocks for constructing a meta-instrument (i.e., the 
agent) that mediates the interactions between the user 
and the GUI of the app by automating UI actions to 
perform a task based on the user’s verbal input through 
the CUI. 

SUGILITE 
We have already designed and implemented a proto-
type system named SUGILITE [9] (Figure 1) that em-
powers users to program a virtual assistant by demon-
stration on GUIs of existing third-party Android mobile 
apps. Through the EPIDOSITE [10] extension, SUGILITE 
also supports programming for smart home devices via 
their corresponding apps, and supports triggering task 
automation by notifications, app launches and events 
from external web services in addition to commands 
from the virtual assistant. In our study [9], SUGILITE 
was shown to be an efficient way to automate repeti-
tive tasks so that they can be invoked using a voice 
command rather than directly manipulating the GUI.  

SUGILITE can generalize the recorded UI actions by 
identifying parameters in the task, and then associating 
parameters specified in the utterance with their corre-
sponding UI actions. For example, for a task with the 
triggering utterance “order a venti cappuccino”, SUGI-

LITE finds two parameters (venti and cappuccino), and 
matches them to the actions of choosing the cup size 

 

 

Figure 1: SUGILITE’s recording 
confirmation pops up when the 
user demonstrates using the GUI 
of the Starbucks app. (top)  

SUGILITE’s interface for viewing a 
script. (bottom) 

 



 

from a dropdown menu, and choosing a product from 
the available coffee types. It also scrapes the alterna-
tive possible values for each parameter from the GUI. 
This generalization mechanism allows SUGILITE to learn 
not only the exact demonstrated task, but also similar 
tasks with different variations of parameter values.  

Demonstrational agents like SUGILITE are also useful for 
breaking down the “information silos” between apps by 
supporting interoperability in the demonstration. Users 
can first demonstrate locating the information of inter-
est by navigating through the GUI of one app, selecting 
the GUI object containing the information using a SUGI-

LITE gesture, and then using the scraped information 
later. Since information is extracted from the presenta-
tion layer, it does not require the availability of APIs in 
the involved apps. Our approach enables end users 
with no programming skills to automate their personal-
ized cross-app tasks, since they do not have to learn 
any programming language, or how to use any APIs. 

Beyond Record and Replay 
Although SUGILITE has supported some generalizations 
of the demonstrated actions, its current underlying 
workflow is still largely record-and-replay, where the 
user first demonstrates an instance of performing the 
task, SUGILITE then infers parameters in the task, and 
tweaks the actions accordingly when replaying if the 
parameter values have changed. Our current research 
focuses on providing the users with more expressive 
power and greater flexibility when creating the automa-
tion, enabling them to easily construct control struc-
tures such as conditionals, iterations and triggers, to 
embed reasoning and computations to handle situations 
that are different than when demonstrated, to forage 
reusable components in existing demonstrations, and 
to edit existing automations at runtime.   

However, many challenges remain. A major one is the 
lack of information about the user’s rationale behind 
actions. In other words, the system needs to infer why 
the user did something from what the user did. So, 
when the scenario changes, the agent can still perform 
the correct action that matches the user’s intention. 
Figure 2 shows an ambiguous demonstration where the 
user’s rationale cannot be inferred from the action 
alone. 

Understanding user rationale, in many cases, requires 
the system to know about the semantics of GUI ob-
jects. It needs to understand the meaning of the infor-
mation that each UI element communicates, and the 
command that will be performed when each interactive 
GUI object is operated on. While some great progress 
has been made in this area (e.g., [4–8]), we are still 
far from having specific and accurate semantic repre-
sentations for GUI objects that are agnostic to the low-
level platform and app-specific details. The semantics 
of a GUI object is also often not only represented by 
the object alone, but also in the layout of the GUI and 
the object’s relationship with other objects (see Figure 
3 for examples). We are developing an architecture for 
extracting some semantic information, but future work 
involves extracting more semantic information from the 
GUI, or providing it as meta-information with the app. 

Furthermore, designing the interactions for the demon-
strational interface itself is challenging. To provide us-
ers adequate expressive power when they program 
with GUI objects in existing app interfaces, this “meta-
interface” needs to support at least the following types 
of interactions: (1) invoke an object in the app as a 
part of the demonstration; (2) extract the content or a 
property from an object, (3) select an object to use it 

 

Figure 2: An example of ambigu-
ous demonstration. This demon-
strated action can represent 
many possible commands. Such 
as “choose ‘Spork’”, “choose the 
first entry”, “choose the cheapest 
restaurant from the list”, “choose 
the promoted restaurant” or 
“choose the restaurant with bo-
nus points available”.  

Additional information is needed 
to record the true rationale of the 
user so that the agent can per-
form the desired action when en-
countering a different list later. 

 

 



 

as the target or as a parameter for an operation, etc. 
Additional commands are also needed for specifying 
programming logic in automation scripts. 

As outlined in the instrumental interaction model [2], 
due to the mismatch between the small vocabulary of 
actions and the large vocabulary of commands, addi-
tional interface elements are required to specify com-
mands. Those elements often play the role of instru-
ments that can mediate interaction between a user and 
a domain object. However, adding these elements is 
difficult on touch-based phones, as techniques like 
modifier keys or large tool palettes are not feasible due 
to the limitations of the input devices and screen sizes. 
It is challenging to design the interaction for the user to 
specify what command to perform on a GUI object. 

These added interactions for controlling the demonstra-
tion can also potentially be confusing since most of the 
screen space is taken up with the GUI of the underlying 
app. Consequently, it is difficult for users to distinguish 
between modes of using an app directly and program-
ming by demonstration on the same app, especially if 
the user needs to refer to a GUI element without invok-
ing any action (e.g., to copy the value of the high score 
in Figure 3 to use later). 

Verbal Instruction + Demonstration on GUIs 
To address some of the above challenges, we are in-
vestigating the use of multi-modal interfaces, where 
verbal instructions are supported at the same time as 
direct manipulations on the GUI. This has long been 
proposed as a more natural way of interaction that pro-
vides users with greater expressive power dating back 
to early pioneer systems like Put-that-there [3] and 
DreamSpace [11]. Recent systems such as PLOW [1] 

have also demonstrated the effectiveness of verbal in-
structions in assisting the agent to learn new tasks 
from demonstrations by providing extra semantic infor-
mation for demonstrated actions.    

The “speak-and-point” pattern [13] in multi-modal in-
teraction can naturally separate choosing an interaction 
instrument (by verbally talking about the command to 
perform) from specifying the target for the interaction 
(by pointing at the target). As we can often observe 
from human-human interaction, one would often use 
this pattern (e.g., “move this chair there”, “paint this 
fence in that color”) when giving instructions. We also 
hope that supporting verbal instructions in our PBD sys-
tem can enable more natural programming by allowing 
users to express their intentions intuitively in a way 
that closely matches their conceptual model of the task. 

Based on results from our preliminary Wizard-of-Oz 
studies, we make two hypotheses on how users would 
perform when asked to provide verbal instructions sim-
ultaneously while demonstrating: (1) They would refer 
to GUI objects available on the screen in verbal instruc-
tions (e.g., “if the number here is greater than the one 
next to it, …”); (2) They would naturally use the feature 
that reflects their rationale for referring to GUI objects 
(e.g., for the action in Figure 2, they would say “choose 
the first one / “Spork” (the text) / the cheapest one” 
depending on their intentions). If both hypotheses turn 
out to hold, the instructions will be very useful in infer-
ring user rationale for the ambiguous demonstration 
problem illustrated in Figure 2. On the other hand, the 
information about the GUI can also be used for ground-
ing the verbal instructions, helping to improve the per-
formance of speech recognition and semantic parsing. 

 

 

 

 

 

Figure 3: Two examples where 
the semantics of a GUI object is 
inferred from its relationship with 
other objects.  

Top: The plus sign is an instru-
ment for incrementing the num-
ber of people next to it. Demon-
stration of clicking on it can be 
inferred as commands such as 
“click on the plus sign next to the 
number of adults until the num-
ber of adults reaches 2”. 

Bottom: SUGILITE needs to under-
stand that the numbers next to 
the team names represent their 
scores, so that the user can ex-
press implicit reasoning, such as 
“choose the winning team”.  
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