
Demonstration + Natural Language:
Multimodal Interfaces for GUI-Based
Interactive Task Learning Agents

Toby Jia-Jun Li, Tom M. Mitchell, and Brad A. Myers

Abstract We summarize our past five years of work on designing, building, and
studying Sugilite, an interactive task learning agent that can learn new tasks and rel-
evant associated concepts interactively from the user’s natural language instructions
and demonstrations leveraging the graphical user interfaces (GUIs) of third-party
mobile apps. Through its multi-modal and mixed-initiative approaches for Human-
AI interaction, Sugilite made important contributions in improving the usability,
applicability, generalizability, flexibility, robustness, and shareability of interactive
task learning agents. Sugilite also represents a new human-AI interaction paradigm
for interactive task learning, where it uses existing app GUIs as a medium for users
to communicate their intents with an AI agent instead of the interfaces for users
to interact with the underlying computing services. In this chapter, we describe the
Sugilite system, explain the design and implementation of its key features, and
show a prototype in the form of a conversational assistant on Android.

1 Introduction

Interactive task learning (ITL) is an emerging research topic that focuses on enabling
task automation agents to learn new tasks and their corresponding relevant concepts
through natural interaction with human users [69]. This topic is also related to the
concept of end-user development (EUD) for task automation [65, 115]. Work in this
domain includes both physical agents (e.g., robots) that learn tasks that might involve
sensing and manipulating objects in the real world [7, 28], as well as software agents

T. J.-J. Li (B) · T. M. Mitchell · B. A. Myers
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: tobyli@cs.cmu.edu

T. M. Mitchell
e-mail: tom.mitchell@cs.cmu.edu

B. A. Myers
e-mail: bam@cs.cmu.edu

This is a preprint of the following chapter: Toby Jia-Jun Li, Tom M. Mitchell, Brad 
Myers, Demonstration + Natural Language: Multimodal Interfaces for GUI-Based 
Interactive Task Learning Agents, published in Artificial Intelligence for Human 
Computer Interaction: A Modern Approach, edited by Yang Li and Otmar Hilliges, 
2021, Springer reproduced with permission of Springer Nature Switzerland AG. The 
final authenticated version is available online at:
https://doi.org/10.1007/978-3-030-82681-9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82681-9_15&domain=pdf
mailto:tobyli@cs.cmu.edu
mailto:tom.mitchell@cs.cmu.edu
mailto:bam@cs.cmu.edu
https://doi.org/10.1007/978-3-030-82681-9_15


T. J.-J. Li et al.

that learn how to perform tasks through software interfaces [3, 10, 68, 75]. This
paper focuses on the latter category.

A particularly useful application of ITL is on conversational virtual assistants
(e.g., Apple Siri, Google Assistant) running on mobile phones. With the widespread
popularity of mobile apps, users are utilizing them to complete a wide variety of
tasks [27, 150]. These apps interact with users through graphical user interfaces
(GUIs), where users usually provide inputs by direct manipulation, and read outputs
from the GUI display. Most GUIs are designed with usability in mind, providing
non-expert users low learning barriers to commonly-used computing tasks. App
GUIs also often follow certain design patterns that are familiar to users, which helps
them easily navigate around GUI structures to locate the desired functionalities [2,
38, 130].

However, GUI-basedmobile apps have several limitations. First, performing tasks
on GUIs can be tedious. For example, the current version of the Starbucks app
on Android requires 14 taps to order a cup of venti Iced Cappuccino with skim
milk, and even more if the user does not have the account information stored. For
such tasks, users would often like to have them automated [6, 105, 127]. Second,
direct manipulation of GUIs is often not feasible or convenient in some contexts.
Third, many tasks require coordination among many apps. But nowadays, data often
remain siloed in individual apps [29]. Lastly, while some app GUIs provide certain
mechanisms of personalization (e.g., remembering and pre-filling the user’s home
location), they are mostly hard-coded. Users have few means of creating customized
rules and specifying personalized task parameters to reflect their preferences beyond
what the app developers have explicitly designed for.

Recently, intelligent agents have become popular solutions to the the limitations
of GUIs. They can be activated by speech commands to perform tasks on the user’s
behalf [102]. This interaction style allows the user to focus on the high-level spec-
ification of the task while the agent performs the low-level actions, as opposed to
the usual direct manipulation GUI in which the user must select the correct objects,
execute the correct operations, and control the environment [25, 135]. Compared
with traditional GUIs, intelligent agents can reduce user burden when dealing with
repetitive tasks, and alleviate redundancy in cross-app tasks. The speech modality in
intelligent agents can support hand-free contexts when the user is physically away
from the device, cognitively occupied by other tasks (e.g., driving), or on devices
with little or no screen space (e.g., wearables) [101]. The improved expressiveness
in natural language also affords more flexible personalization in tasks.

Nevertheless, current prevailing intelligent agents have limited capabilities. They
invoke underlying functionalities by directly calling back-end services. Therefore,
agents need to be specifically programmed for each supported application and ser-
vice. By default, they can only invoke built-in apps (e.g., phone, message, calendar,
music) and some integrated external apps andweb services (e.g.,web search,weather,
Wikipedia), lacking the capability of controlling arbitrary third-party apps and ser-
vices. To address this problem, providers of intelligent agents, such asApple, Google,
and Amazon, have released developer kits for their agents, so that the developers of
third-party apps can integrate their apps into the agents to allow the agents to invoke



Demonstration + Natural Language: Multimodal Interfaces …

these apps from user commands. However, such integration requires significant cost
and engineering effort from app developers, therefore, only some of the most popular
tasks in popular apps have been integrated into prevailing intelligent agents so far.
The “long-tail” of tasks and apps have not been supported yet, and will likely not get
supported due to the cost and effort involved.

Prior literature [143] showed that the usage of “long-tail” appsmade up significant
portion in user app usage. Smartphone users also have highly diverse usage patterns
within apps [150] and wish to have more customizability over how agents perform
their tasks [36]. Therefore, relying on third-party developers’ effort to extend the
capabilities of intelligent agents is not sufficient for supporting diverse user needs.
It is not feasible for end users to develop for new tasks in prevailing agents on their
own either, due to (i) their lack of technical expertise required, and (ii) the limited
availability of openly accessible application programming interfaces (APIs) formany
back-end services. Therefore, adding the support for interactive task learning from
end users in intelligent agents is particularly useful.

1.1 Interactive Task Learning for Smartphone Intelligent
Agents

To address this problem, We designed, implemented, and studied a new end-user
programmable interactive task learning agent called Sugilite1 [80] Based on prior
works in EUD and ITL for task automation, We identify the below key research
challenges that Sugilite seeks to address:

• Usability: Sugilite should be usable for users without significant programming
expertise. Some prior EUD systems (e.g., [100, 127]) require users to program in
a visual programming language or a textual scripting language, which imposes a
significant learning barrier and prevents users with limited programming expertise
from using these systems.

• Applicability: Sugilite should handle a wide range of common and long-tail
tasks across different domains. Many existing EUD systems can only work with
applications implemented with specific frameworks or libraries (e.g., [17, 32]),
or services that provide open API access to their functionalities (e.g., [53]). This
limits the applicability of those systems to a small subset of tasks.

• Generalizability: Sugilite should learn generalized procedures and concepts
that handle new task contexts and different task parameters without requiring
users to reprogram from scratch. For example, macro recorders like [129] can
record a sequence of input events (e.g., clicking on the coordinate (x, y)) and
replay the same actions at a later time. But these macros are not generalizable, and
will only perform the exact same action sequences but not tasks with variations

1 Sugilite is named after a purple gemstone, and stands for: Smartphone Users Generating
Intelligent Likeable Interfaces Through Examples.



T. J.-J. Li et al.

or different parameters. Learning generalized procedures and concepts requires
deeper understanding for the semantics of the medium of instruction, which in
Sugilite’s case are the GUIs of existing mobile apps.

• Flexibility: Sugilite should provide adequate expressiveness to allow users to
express flexible automated rules, conditions, and other control structures that
reflect their desired task intentions. The simple single trigger-action rule approach
like [53, 56], while providing great usability due to its simplicity, is not sufficiently
expressive for many tasks that users want to automate [140].

• Robustness: Sugilite should be resilient to minor changes in target applications,
and be able to recover from errors caused by previously unseen or unexpected
situations with the user’s help. Macro recorders such as [129] are usually brit-
tle. Approaches with complicated programming synthesis or machine learning
techniques (e.g., [98, 108]) usually lack transparency into the inference process,
making it difficult for end users to recover from errors. Another aspect of robust-
ness is to handle errors in natural language interactions [8, 101].

• Shareability: Sugilite should support the sharing of learned task procedures
and concepts among users. This requires Sugilite to (i) have the robustness of
being resilient to minor differences between different devices, and (ii) preserve the
original end-user developer’s privacy in the sharing process. As discussed in [75,
78], end users are often hesitant about sharing end-user-developed scripts due to
the fear of accidentally including personal private information in shared program
artifacts.

To address the challenges, Sugilite takes a multi-modal interactive task learning
approach, where it learns new tasks and concepts from end users interactively in two
complementary modalities: (i) demonstrations by direct manipulation of third-party
app GUIs, and (ii) spoken natural language instructions. This approach combines
two popular EUD techniques—programming by demonstration (PBD) and natural
language programming. In PBD, users teach the system a new behavior by directly
demonstrating how to perform it. In natural language programming, users teach the
system by verbally describing and explaining the desired behaviors using a natural
language likeEnglish.Combining these twomodalities allowsusers to take advantage
of the easiest, most natural, and/or most effective modality based on the context for
different parts of the programming task.

Through itsmulti-modal approach combiningPBDandnatural language program-
ming, Sugilite mitigates the shortcomings in each individual technique. Demon-
strations are often too literal, making it hard to infer the user’s higher level inten-
tions. In other words, it often only records what the user did, but not why the user
did it. Therefore, it is difficult to produce generalizable programs from demonstra-
tions alone. On the other hand, natural language instructions can be very flexible
and expressive for users to communicate their intentions and desired system behav-
iors. However, they are inherently ambiguous. In our approach, Sugilite grounds
natural language instructions to demonstration app GUIs, allowing mutual disam-
biguation [119], where demonstrations are used to disambiguate natural language
inputs and vice versa.



Demonstration + Natural Language: Multimodal Interfaces …

1.2 Contributions

Our work contributes a new mixed-initiative multi-modal approach for intelligent
agents to learn new task procedures and relevant concepts and a system that imple-
ments this approach. Specifically, this chapter describes the following contributions:

1. The Sugilite system, a mobile PBD system that enables end users with no
significant programming expertise to create automation scripts for arbitary tasks
across any or multiple third-party mobile apps through a multi-modal interface
combining demonstrations and natural language instructions [80] (Sect. 4).

2. Amulti-modal mixed-initiative PBD disambiguation interface that addresses the
data description problem by allowing users to verbally explain their intentions
for demonstrated GUI actions through multi-turn conversations with the help of
an interaction proxy overlay that guides users to focus on providing effective
information [84] (Sect. 5.2).

3. A technique for grounding natural language task instructions to app GUI entities
by constructing semantic relational knowledge graphs from hierarchical GUI
structures, along with a formative study showing the feasibility of this technique
with end users [84] (Sect. 5.2).

4. A PBD script generalization mechanism that leverages the natural language
instructions, the recordeduser demonstration, and theGUIhierarchical structures
of third-party mobile apps to infer task parameters and their possible values from
a single demonstration [80] (Sect. 5.3).

5. A top-down conversational programming framework for task automation that
can learn both task procedures and the relevant concepts by allowing users to
naturally start with describing the task and its conditionals at a high-level and
then recursively clarify ambiguities, explain unknown concepts, and define new
procedures through a mix of conversations and references to third-party app
GUIs [88] (Sect. 5.4).

6. A multi-modal error handling and repairing approach for task-oriented conver-
sational agents that helps users discover, identify the causes of, and recover from
conversational breakdowns caused by natural language understanding errors
using existing mobile app GUIs for grounding [82] (Sect. 5.5).

7. A new self-supervised technique for generating semantic embeddings of GUI
screens and components that encode their textual content, visual design and
layout patterns, and app metadata without requiring manual data annotation [87]
(Sect. 5.6).

2 The Human-AI Collaboration Perspective

We argue that a key problem in the ITL process is to facilitate effective Human-
AI collaboration. In the traditional view, programming is viewed as the process of
transforming a user’s existing mental plan into a programming language that the



T. J.-J. Li et al.

computer can execute. However, in end-user ITL, this is not an accurate model. The
user often starts with only a vague idea of what to do and needs an intelligent system’s
help to clarify their intents. We view ITL as a joint activity where the user and the
agent share the same goal in a human-AI collaboration framework. In such mixed-
initiative interactions, the user’s goals and inputs come with uncertainty [4, 51]. The
agent needs to show guesses of user goals, assist the user to provide more effective
inputs, and engage in multi-turn dialogs with the user to resolve any uncertainties
and ambiguities.

Significant progress has beenmadeon this topic in recent years in bothAI andHCI.
Specifically on the AI side, advances in natural language processing (NLP) enable
the agents to process users’ instructions of task procedures, conditionals, concepts
definitions, and classifiers in natural language [2, 6, 10], to ground the instructions
(e.g., [12]), and to have dialog with users based on GUI-extracted task models (e.g.,
[11]). Reinforcement learning techniques allow the agent to more effectively explore
action sequences on GUIs to complete tasks [13]. Large GUI datasets such as RICO
[4] allow the analysis of GUI patterns at scale, and the construction of generalized
models for extracting semantic information from GUIs.

The HCI community also has presented new study findings, design implications,
and interaction designs in this domain. A key direction has been the design of multi-
modal interfaces that leverage both natural language instructions and GUI demon-
strations [1, 7]. Priorwork also explored howusers naturally express their task intents
[10, 15, 17] and designed new interfaces to guide the users to provide more effective
inputs (e.g., [8]).

On one hand, AI-centric task flow exploration and program synthesis techniques
often lack transparency for users to understand the internal process, and they pro-
vide the users with little control over the task fulfillment process to reflect their
personal preferences. On the other hand, machine intelligence is desired because the
users’ instructions are often incomplete, vague, ambiguous, or even incorrect. There-
fore, the system needs to provide adequate assistance to guide the users to provide
effective inputs to express their intents, while retaining the users’ agency, trust, and
control of the process. While relevant design principles have been discussed in early
foundational works in mixed-initiative interaction [5] and demonstrational interfaces
[16], incorporating these ideas into the design and implementation of actual systems
remains an important challenge.

A crucial factor in human-AI collaboration is the medium. Sugilite presents a
new human-AI interaction paradigm for interactive task learning, where it uses the
GUIs of the existing third-partymobile apps as themedium for users to communicate
their intents with an AI agent instead of the interfaces for users to interact with the
underlying computing services. Among common mediums for agent task learning,
app GUIs sit at a nice middle ground between (1) programming language, which can
be easily processed by a computing system but imposes significant learning barri-
ers to non-expert users; and (2) unconstrained visual demonstrations in the physical
work and natural language instructions, which are natural and easy-to-use for users
but infeasible for computing systems to fully understand without significant human-
annotated training data and task domain restrictions given the current state-of-art



Demonstration + Natural Language: Multimodal Interfaces …

in natural language understanding, computer vision, and commonsense reasoning.
In comparison, existing app GUIs cover a wide range of useful task domains for
automation, encode the properties and relations of task-relevant entities, and encap-
sulate the flows and constraints of underlying tasks in formats that can be feasibly
extracted and understood by an intelligent agent.

By sitting between the user and the GUIs of third-party apps, Sugilite allows
the user to teach the agent new task procedures and concepts by demonstrating them
on existing third-party app GUIs and verbally explaining them in natural language.
When executing a task, Sugilite directly manipulates app GUIs on the user’s behalf.
This approach tackles the two major barriers in prevailing intelligent agents by (i)
leveraging the available third-party appGUIs as a channel to access a large number of
back-end services without requiring openly available APIs, and (ii) taking advantage
of users’ familiaritywith appGUIs, so users can program the intelligent agentwithout
having significant technical expertise by using app GUIs as the medium.

3 Related Work

3.1 Programming by Demonstration

Sugilite uses the programming by demonstration (PBD) technique to enable end
users to define concepts by referring to the content of GUIs from third-party mobile
apps, and to teach new procedures through demonstrations with those apps. PBD
is a promising technique for enabling end users to automate their activities without
necessarily requiring programming knowledge—It allows users to program in the
same environment in which they perform the actions. This makes PBD particularly
appealing to many end users, who have little knowledge of conventional program-
ming languages, but are familiar with how to perform the tasks they wish to automate
using existing app GUIs [37, 94, 114].

Akey challenge forPBD is generalization [37, 71, 94].Whenanuser demonstrates
an instance of performing a task in a specific situation, the PBD system needs to learn
the task a higher level of abstraction so that it can perform similar tasks (with different
parameters, configurations etc.) in new contexts. Sugilite improved the generaliza-
tion capability compared with prior similar PBD agents such as CoScripter [75],
Hilc [57], Sikuli [147], and VASTA [132] through its support for parameterization
(Sect. 5.3), data description disambiguation (Sect. 5.2), and concept generalization
(Sect. 5.4).

Sugilite supports domain-independent PBD by task automation by using GUIs
of third-party apps. Similar approaches have also been used in prior systems. For
example, AssistiveMacros [129] uses mobile app GUIs, CoScripter [75], d.mix [50],
Vegemite [97], Ringer [13], and Plow [3] use web interfaces, and Hilc [57] and
Sikuli [147] use desktop GUIs. Macro recording tools like [129] can record a
sequence of input events and replay them later. These tools are too literal—they



T. J.-J. Li et al.

can only replay exactly the same procedure that was demonstrated, without the abil-
ity to generalize the demonstration to perform similar tasks. They are also brittle
to any UI changes in the app. Sikuli [147], VASTA [132], and Hilc [57] used the
visual features of GUI entities to identify the target entities for actions—while this
approach has some advantages over Sugilite’s approach, such as being able to work
with graphic entities without textual labels or other appropriate identifiers, the visual
approach does not use the semantics of GUI entities, which also limits its generaliz-
ability.

In human–robot interaction, PBD is often used in interactive task learning where
a robot learns new tasks and procedures from the user’s demonstration with physical
objects [7, 20, 45, 64]. The demonstrations are sometimes also accompanied by nat-
ural language instructions [112, 133] similar to Sugilite. While many recent works
have been done in enhancing computing systems’ capabilities for parsing human
activities (e.g., [126]), modeling human intents (e.g., [44]), representing knowledge
(e.g., [149]), from visual information from the physical world, it remains a major
AI challenge to recognize, interpret, represent, learn from, and reason with visual
demonstrations. In comparison, Sugilite avoids this grand challenge by using exist-
ing app GUIs as the alternative medium for task instruction, which retains the user
familiarity, naturalness, and domain generality of visual demonstration but is much
easier to comprehend for a computing system.

3.2 Natural Language Programming

Sugilite uses natural language as one of the two primary modalities for end users
to program task automation scripts. The idea of using natural language inputs for
programming has been explored for decades [11, 18, 95, 109]. In NLP and AI
communities, this approach is also known as learning by instruction [10, 33, 68, 96].

The foremost challenge in supporting natural language programming is to deal
with the inherent ambiguities and vagueness in natural language [141]. To address
this challenge, a prior approach was to require users to use similar expression styles
that resembled conventional programming languages (e.g., [11, 77, 125]), so that
the system could directly translate user instructions into code. Despite that the user
instructions used in this approach seemed like natural language, it did not allowmuch
flexibility in expressions. This approach is not adequate for end-user development,
because it has a high learning barrier for userswithout programming expertise—users
have to adapt to the system by learning new syntax, keywords, and structures.

Another approach for handling ambiguities and vagueness in natural language
inputs is to seek user clarification through conversations. For example, Iris [43] asked
follow-up questions and presents possible options through conversations when ini-
tial user inputs are incomplete or unclear. This approach lowered the learning barrier
for end users, as it did not require them to clearly define everything up front. It
also allowed users to form complex commands by combining multiple natural lan-
guage instructions in conversational turns under the guidance of the system. This



Demonstration + Natural Language: Multimodal Interfaces …

multi-turn interactive approach is also known as interactive semantic parsing in the
NLP community [145, 146]. Sugilite adopts the use of multi-turn conversations
as a key strategy in handling ambiguities and vagueness in user inputs. However,
a key difference between Sugilite and other conversational instructable agents is
that Sugilite is domain-independent. All conversational instructable agents need to
resolve the user’s inputs into existing concepts, procedures, and system functionali-
ties supported by the agent, and to have natural language understanding mechanisms
and training data in each task domain. Because of this constraint, existing agents
often limit their supported tasks to one or a few pre-defined domains, such as data
science [43], email processing [10, 136], invoking Web APIs [137], or database
queries [49, 61, 76].

Sugilite supports learning concepts and procedures from existing third-party
mobile apps regardless of the task domain. Users can explain new concepts, define
task conditionals, and clarify ambiguous demonstrated actions in Sugilite by ref-
erencing relevant information shown in app GUIs. The novel semantic relational
graph representation of GUIs (details in Sect. 5.2) allows Sugilite to understand
user references to GUI content without having prior knowledge on the specific task
domain. This approach enablesSugilite to support awide rangeof tasks fromdiverse
domains, as long as the corresponding mobile apps are available. This approach also
has a low learning barrier because end users are already familiar with the function-
alities of mobile apps and how to use them. In comparison, with prior instructable
agents, users are often unclear about what concepts, procedures, and functionalities
already exist to be used as “building blocks” for developing new ones.

3.3 Multi-modal Interfaces

Multi-modal interfaces process twoormore user inputmodes in a coordinatedmanner
to provide users with greater expressive power, naturalness, flexibility, and porta-
bility [120]. Sugilite combines speech and touch to enable a “speak and point”
interaction style, which has been studied since early multi-modal systems like Put-
that-there [23]. Prior systems such as CommandSpace [1], Speechify [60], Quick-
Set [121], SMARTBoard [113], and PixelTone [70] investigated multi-modal inter-
faces that can map coordinated natural language instructions and GUI gestures to
system commands and actions. In programming, similar interaction styles have also
been used for controlling robots (e.g., [55, 104]). But the use of these systems are
limited to specific first-party apps and task domains, in contrast to Sugilite which
aims to be general-purpose.

When Sugilite addresses the data description problem (details in Sect. 5.2),
demonstration is the primary modality; verbal instructions are used for disambiguat-
ing demonstrated actions. A key pattern used in Sugilite is mutual disambigua-
tion [119]. When the user demonstrates an action on the GUI with a simultaneous
verbal instruction, our system can reliably detect what the user did and on which UI
object the user performed the action. The demonstration alone, however, does not



T. J.-J. Li et al.

explain why the user performed the action, and any inferences on the user’s intent
would be fundamentally unreliable. Similarly, from verbal instructions alone, the
system may learn about the user’s intent, but grounding it onto a specific action may
be difficult due to the inherent ambiguity in natural language. Sugilite utilizes these
complementary inputs to infer robust and generalizable scripts that can accurately
represent user intentions in PBD. A similar multi-modal approach has been used
for handling ambiguities in recognition-based interfaces [103], such as correcting
speech recognition errors [138] and assisting the recognition of pen-based handwrit-
ing [67]. The recent DoThisHere [144] system uses a similar multi-modal interface
for cross-app data query and transfer between multiple mobile apps.

In the parameterization and concept teaching components of Sugilite, the nat-
ural language instructions come first. During the parametrization, the user first ver-
bally describes the task, and then demonstrates the task from which Sugilite infers
parameters in the initial verbal instruction, and the corresponding possible values. In
concept teaching, the user starts with describing an automation rule at a high-level in
natural language, and then recursively defines any ambiguous or vague concepts by
referring to app GUIs. Sugilite’s approach builds upon prior work like Plow [3],
which uses user verbal instructions to hint possible parameters, to further explore
how GUI and GUI-based demonstrations can help enhance natural language inputs.

3.4 Understanding App Interfaces

A unique challenge for Sugilite is to support multi-modal PBD on arbitrary third-
party mobile app GUIs. Some of such GUIs can be complicated, with hundreds
of entities, each with many different properties, semantic meanings, and relations
with other entities. Moreover, third-party mobile apps only expose the low-level
hierarchical representations of their GUIs at the presentation layer, without revealing
information about internal program logic.

There has been some prior work on inferring semantics and task knowledge from
GUIs. Prefab [40–42] introduces pixel-based methods to model interactive widgets
and interface hierarchies in GUIs, and allowed runtime modifications of widget
behaviors. Waken [12] also uses a computer vision approach to recognize GUI com-
ponents and activities from screen captured videos. StateLens [48] and Kite [89]
look at the sequence of GUI screens of completing a task, from which they can infer
the task flowmodel with multiple different branches and states. The interaction min-
ing approach used in Erico [39] and Rico [38] captures the static (UI layout, visual
features) and dynamic (user flows) parts of an app’s design from a large corpus of
user interaction traces with mobile apps. A similar approach was also used to learn
the design semantics of mobile apps [99]. These approaches use a smaller number
of discrete types of flows, GUI elements, and entities to represent GUI screens and
their components, while our Screen2Vec uses continuous embedding in a vector
space for screen representation.



Demonstration + Natural Language: Multimodal Interfaces …

Some prior techniques specifically focus on the visual aspect of GUIs. The Rico
dataset [38] shows that it is feasible to train a GUI layout embedding with a large
screen corpus, and retrieve screens with similar layouts using such embeddings.
Chen et al.’s work [31] and Li et al.’s work [91] show that trained machine learning
models can generate semantically meaningful natural language descriptions for GUI
components based on their visual appearances and hierarchies. Compared with them,
the Screen2Vec method (Sect. 5.6) used in Sugilite provides a more holistic
representation of GUI screens by encoding textual content, GUI component class
types, and app-specific metadata in addition to the visual layout.

Another category of work in this area focuses on predicting GUI actions for
completing a task objective. Pasupat et al.’s work [122] maps the user’s natural
language commands to target elements on web GUIs. Li et al.’s work [90] goes a
step further by generating sequences of actions based on natural language commands.
These works use the supervised approach that require a large amount of manually-
annotated trainingdata,which limits its utilization. In comparison, theScreen2Vec
method used in Sugilite uses a self-supervised approach that does not require any
manual data annotation of user intents and tasks. Screen2Vec also does not need
any annotation on theGUI screens themselves, unlike [148]which requires additional
developer annotations for the metadata of GUI components.

Sugilite faces a unique challenge—in Sugilite, the user talks about the under-
lying task of an app in natural language while making references to the app’s GUI.
The system needs to have sufficient understanding about the content of the app GUI
to be able to handle these verbal instructions to learn the task. Therefore, the goal
of Sugilite in understanding app interfaces is to abstract the semantics of GUIs
from their platform-specific implementations, while being sufficiently aligned with
the semantics of users’ natural language instructions, so that it can leverage the GUI
representation to help understanding the user’s instruction of the underlying task.

4 System Overview

We present the prototype of a new task automation agent named Sugilite.2 This
prototype integrates and implements the results from several of our prior research
works [80–82, 84, 86–89]. The implementation of our system is also open-sourced
on GitHub.3 This section explains how Sugilite learns new tasks and concepts from
the multi-modal interactive instructions from the users.

The user starts with speaking a command. The command can describe either an
action (e.g., “check the weather”) or an automation rule with a condition (e.g., “If
it is hot, order a cup of Iced Cappuccino”). Suppose that the agent has no prior
knowledge in any of the involved task domains, then it will recursively resolve the
unknown concepts and procedures used in the command. Although it does not know

2 A demo video is available at https://www.youtube.com/watch?v=tdHEk-GeaqE.
3 https://github.com/tobyli/Sugilite_development.

https://www.youtube.com/watch?v=tdHEk-GeaqE
https://github.com/tobyli/Sugilite_development


T. J.-J. Li et al.

Fig. 1 An example dialog structure while Sugilite learns a new task that contains a conditional
and new concepts. The numbers indicate the sequence of the utterances. The screenshot on the right
shows the conversational interface during these steps

these concepts, it can recognize the structure of the command (e.g., conditional), and
parse each part of the command into the corresponding typed resolve functions, as
shown in Fig. 1. Sugilite uses a grammar-based executable semantic parsing archi-
tecture [92]; therefore, its conversation flowoperates on the recursive execution of the
resolve functions. Since the resolve functions are typed, the agent can generate
prompts based on their types (e.g., “How do I tell whether…” for resolveBool
and “How do I find out the value for…” for resolveValue).

When the Sugilite agent reaches the resolve function for a value query or
a procedure, it asks the users if they can demonstrate them. The users can then
demonstrate how they would normally look up the value, or perform the procedure
manually with existing mobile apps on the phone by direct manipulation (Fig. 3a).
For any ambiguous demonstrated action, the user verbally explains the intent behind
the action through multi-turn conversations with the help from an interaction proxy
overlay that guides the user to focus on providing more effective input (see Fig. 3,
more details in Sect. 5.2).When the user demonstrates a value query (e.g., finding out
the value of the temperature), Sugilite highlights the GUI elements showing values
with the compatible types (see Fig. 2) to assist the user in finding the appropriate
GUI element during the demonstration.

All user-instructed value concepts, Boolean concepts, and procedures automati-
cally get generalized by Sugilite. The procedures are parameterized so that they can
be reused with different parameter values in the future. For example, for Utterance
8 in Fig. 1, the user does not need to demonstrate again since the system can invoke
the newly-learned order_Starbucks function with a different parameter value
(details in Sect. 5.3). The learned concepts and value queries are also generalized so
that the system recognizes the different definitions of concepts like “hot” and value
queries like “temperature” in different contexts (details in Sect. 5.4).



Demonstration + Natural Language: Multimodal Interfaces …

Fig. 2 The user teaches the
value concept “commute
time” by demonstrating
querying the value in Google
Maps. Sugilite highlights
all the duration values on the
Google Maps GUI

5 Key Features

5.1 Using Demonstrations in Natural Language Instructions

Sugilite allows users to use demonstrations to teach the agent any unknown proce-
dures and concepts in their natural language instructions.As discussed earlier, amajor
challenge in ITL is that understanding natural language instructions and carrying out
the tasks accordingly require having knowledge in the specific task domains. Our use
of programming by demonstration (PBD) is an effective way to address this “out-of-
domain” problem in both the task fulfillment and the natural language understanding
processes [85]. In Sugilite, procedural actions are represented as sequences of GUI
operations, and declarative concepts can be represented as references to GUI content.
This approach supports ITL for a wide range of tasks—virtually anything that can
be performed with one or more existing third-party mobile apps.

Our prior study [88] also found that the availability of app GUI references can
result in end users providing clearer natural language commands. In one study where
we asked participants to instruct an intelligent agent to complete everyday computing
tasks in natural language, the participants who saw screenshots of relevant apps
used fewer unclear, vague, or ambiguous concepts in their verbal instructions than
those who did not see the screenshots. By using demonstrations in natural language
instructions, our multi-modal approach also makes understanding the user’s natural
language instructions easier by naturally constraining the user’s expressions.



T. J.-J. Li et al.

5.2 Spoken Intent Clarification for Demonstrated Actions

A major limitation of demonstrations is that they are too literal, and are, therefore,
brittle to any changes in the task context. They encapsulate what the user did, but not
why the user did it. When the context changes, the agent often may not know what
to do, due to this lack of understanding of the user intents behind their demonstrated
actions. This is known as the data description problem in the PBD community, and it
is regarded as a key problem in PBD research [37, 94]. For example, just looking at
the action shown in Fig. 3a, one cannot tell if the user meant “the restaurant with the
most reviews”, “the promoted restaurant”, “the restaurant with 1,000 bonus points”,
“the cheapest Steakhouse”, or any other criteria, so the system cannot generate a
description for this action that accurately reflects the user’s intent. A prior approach
is to ask for multiple examples from the users [106], but this is often not feasible
due to the user’s inability to come up with useful and complete examples, and the
amount of examples required for complex tasks [74, 116].

Sugilite’s approach is to ask users to verbally explain their intent for the demon-
strated actions using speech. Our formative study [84] with 45 participants found that
end users were able to provide useful and generalizable explanations for the intents
of demonstrated actions. They also commonly used in their utterances semantic ref-
erences to GUI content (e.g., “the close by restaurant” for an entry showing the text
“596 ft”) and implicit spatial references (e.g., “the score for Lakers” for a text object
that contains a numeric value and is right-aligned to another text object “Lakers”).

Based on these findings, we designed and implemented a multi-modal mixed-
initiative intent clarificationmechanism for demonstrated actions.As shown in Fig. 3,
the user describes their intention in natural language, and iteratively refines the
descriptions to remove ambiguity with the help of an interactive overlay (Fig. 3d).
The overlay highlights the result from executing the current data description query,
and helps the user focus on explaining the key differences between the target object
(highlighted in red) and the false positives (highlighted in yellow) of the query.

Fig. 3 The screenshots of Sugilite’s demonstration mechanism and its multi-modal mixed-
initiative intent clarification process for the demonstrated actions



Demonstration + Natural Language: Multimodal Interfaces …

To ground the user’s natural language explanations about GUI elements, Sugilite
represents each GUI screen as a UI snapshot graph. This graph captures the GUI
elements’ text labels, meta-information (including screen position, type, and package
name), and the spatial (e.g., nextTo), hierarchical (e.g., hasChild), and semantic
relations (e.g.,containsPrice) among them (Fig. 4).A semantic parser translates
the user’s explanation into a graph query on the UI snapshot graph, executes it on
the graph, and verifies if the result matches the correct entity that the user originally
demonstrated. The goal of this process is to generate a query that uniquely matches
the target UI element and also reflects the user’s underlying intent.

5.2.1 UI Snapshot Graph

Formally, we define a UI snapshot graph as a collection of subject-predicate-object
triples denoted as (s, p, o), where the subject s and the object o are two entities, and
the predicate p is a directed edge representing a relation between the subject and
the object. In Appinite’s graph, an entity can either represent a view in the GUI,
or a typed (e.g., string, integer, Boolean) constant value. This denotation is highly
flexible—it can support a wide range of nested, aggregated, or composite queries.
Furthermore, a similar representation is used in general-purpose knowledge bases
such as DBpedia [9], Freebase [22], Wikidata [142], and WikiBrain [83], which can
enable us to plugAppinite’s UI snapshot graph into these knowledge bases to support
better semantic understanding of app GUIs in the future.

The first step in constructing a UI snapshot graph from the hierarchical tree
extracted from the Android Accessibility Service is to flatten all views in the tree
into a collection of view entities, allowing more flexible queries on the relations
between entities on the graph. The hierarchical relations are still preserved in the
graph, but converted into hasChild and hasParent relationships between the
corresponding view entities. Properties (e.g., coordinates, text labels, class names)
are also converted into relations, where the values of the properties are represented
as entities. Two or more constants with the same value (e.g., two views with the same
class name) are consolidated as a single constant entity connected to multiple view
entities, allowing easy querying for views with shared properties values.

In GUI designs, horizontal or vertical alignments between objects often suggest a
semantic relationship [5]. Generally, smaller geometric distance between two objects
also correlates with higher semantic relatedness between them [46]. Therefore, it
is important to support spatial relations in data descriptions. Appinite adds spatial
relationships between view entities to UI snapshot graphs based on the absolute coor-
dinates of their bounding boxes, including above, below, rightTo, leftTo,
nextTo, and near relations. These relations capture not only explicit spatial refer-
ences in natural language (e.g., the button next to something), but also implicit ones
(see Fig. 4 for an example). In Appinite, thresholds in the heuristics for determining
these spatial relations are relative to the dimension of the screen, which supports
generalization across phones with different resolutions and screen sizes.



T. J.-J. Li et al.

Fig. 4 Sugilite’s instruction parsing and grounding process for intent clarifications illustrated on
an example UI snapshot graph constructed from a simplified GUI snippet

Appinite also recognizes some semantic information from the raw strings found in
the GUI to support grounding the user’s high-level linguistic inputs (e.g., “item with
the lowest price”). To achieve this, Appinite applies a pipeline of data extractors
on each string entity in the graph to extract structured data (e.g., phone number,
email address) and numerical measurements (e.g., price, distance, time, duration),
and saves them as new entities in the graph. These new entities are connected to the
original string entities by contains relations (e.g., containsPrice). Values
in each category of measurements are normalized to the same units so they can be
directly compared, allowing flexible computation, filtering, and aggregation.

5.2.2 Parsing

Our semantic parser uses a Floating Parser architecture [123] and is implemented
with the SEMPRE framework [16]. We represent UI snapshot graph queries in a



Demonstration + Natural Language: Multimodal Interfaces …

simple but flexible LISP-like query language (S-expressions) that can represent joins,
conjunctions, superlatives and their compositions, constructed by the following 7
grammar rules:

E → e; E → S; S → (join r E); S → (and S S)

T → (ARG_MAX r S); T → (ARG_MIN r S); Q → S | T

where Q is the root non-terminal of the query expression, e is a terminal that rep-
resents a UI object entity, r is a terminal that represents a relation, and the rest of
the non-terminals are used for intermediate derivations. Sugilite’s language forms a
subset of a more general formalism known as Lambda Dependency-based Composi-
tional Semantics [93], which is a notationally simpler alternative to lambda calculus
which is particularlywell-suited for expressing queries over knowledge graphs.More
technical details and the user evaluation are discussed in [84].

5.3 Task Parameterization Through GUI Grounding

AnotherwaySugilite leveragesGUI groundings in the natural language instructions
is to infer task parameters and their possible values. This allows the agent to learn
generalized procedures (e.g., to order any kind of beverage from Starbucks) from a
demonstration of a specific instance of the task (e.g., ordering an iced cappuccino).

Sugilite achieves this by comparing the user utterance (e.g., “order a cup of
iced cappuccino”) against the data descriptions of the target UI elements (e.g., click
on the menu item that has the text “Iced Cappuccino”) and the arguments (e.g., put
“Iced Cappuccino” into a search box) of the demonstrated actions for matches. This
process grounds different parts in the utterances to specific actions in the demon-
strated procedure. It then analyzes the hierarchical structure of GUI at the time of
demonstration, and looks for alternative GUI elements that are in parallel to the orig-
inal target GUI element structurally. In this way, it extracts the other possible values
for the identified parameter, such as the names of all the other drinks displayed in
the same menu as “Iced Cappuccino”

The extracted sets of possible parameter values are also used for disambiguating
the procedures to invoke, such as invoking the order_Starbucks procedure
for the command “order a cup of latte”, but invoking the order_PapaJohns
procedure for the command “order a cheese pizza.”

5.4 Generalizing the Learned Concepts

In addition to the procedures, Sugilite also automatically generalizes the learned
concepts in order to reuse parts of existing concepts as much as possible to avoid
requiring users to perform redundant demonstrations [88].



T. J.-J. Li et al.

For Boolean concepts, Sugilite assumes that the type of the Boolean operation
and the types of the arguments stay the same, but the arguments themselves may dif-
fer. For example, for the concept “hot” in Fig. 1, it should still mean that a temperature
(of something) is greater than another temperature. But the two in comparison can be
different constants, or from different value queries. For example, suppose after the
interactions in Fig. 1, the user instructs a new rule “if the oven is hot, start the cook
timer.”Pumice can recognize that “hot” is a concept that has been instructed before in
a different context, so it asks “I already know how to tell whether it is hot when deter-
miningwhether to order a cup of IcedCappuccino. Is it the same here when determin-
ing whether to start the cook timer?” After responding “No”, the user can instruct
how to find out the temperature of the oven, and the new threshold value for the
condition “hot” either by instructing a new value concept, or using a constant value.

The generalization mechanism for value concepts works similarly. Pumice sup-
ports value concepts that share the same name to have different query implemen-
tations for different task contexts. For example, following the “if the oven is hot,
start the cook timer” example, suppose the user defines “hot” for this new context as
“The temperature is above 400 degrees.” Pumice realizes that there is already a value
concept named “temperature”, so it will ask “I already know how to find out the value
for temperature using the Weather app. Should I use that for determining whether
the oven is hot?”, to which the user can say “No” and then demonstrate querying the
temperature of the oven using the corresponding app (assuming the user has a smart
oven with an in-app display of its temperature).

This mechanism allows learned concepts like “hot” to be reused at three differ-
ent levels: (i) exactly the same (e.g., the temperature of the weather is greater than
85°F); (ii) with a different threshold (e.g., the temperature of the weather is greater
than x); and (iii)with a different value query (e.g., the temperature of something else
is greater than x).

5.5 Breakdown Repairs in Task-Oriented Dialogs

Another important challenge in facilitating effective human-AI collaboration with
ITL agents is to support the discovery and repair of conversational breakdowns.
Despite the advances in the agent’s natural language understanding capabilities, it is
still far from being able to understand the wide range of flexible user utterances and
engage in complex dialog flows [47]. Existing agents employ rigid communication
patterns, requiring that users adapt their communication patterns to the needs of the
system instead of the other way around [14, 59]. As a result,conversational break-
downs, defined as failures of the system to correctly understand the intended mean-
ing of the user’s communication, often occur. Conversational breakdowns decrease
users’ satisfaction, trust, and willingness to continue using a conversational system
[15, 58, 101].

Beneteau et al.’s deployment study [14] of Alexa showed that a major barrier
for the users to repair conversational breakdowns is that their understandings of the
causes of the breakdowns are frequently inaccurate, as a result, the repair strate-
gies they naturally use are often ineffective. Other studies [8, 21, 34, 59, 117, 124]



Demonstration + Natural Language: Multimodal Interfaces …

Fig. 5 The interface of Sovite: a Sovite shows a app GUI screenshot to communicates its state
of understanding. The yellow highlight overlay specifies the task slot value. The user can drag the
overlay to fix slot value errors. b To fix intent detection errors, the user can refer to an app that
represents their desired task. Sovite will match the utterance to an app on the phone (with its icon
shown), and look for intents that use or are relevant to this app. c If the intent is still ambiguous
after referring to an app, the user can show a specific app screen relevant to the desired task

reported similar findings of the types of breakdowns encountered by users and the
common repair strategies. In a taxonomy of conversational breakdown repair strate-
gies by Ashktorab et al. [8], repair strategies can be categorized into dimensions of:
(1) whether there is evidence of breakdown (i.e., whether the system makes users
aware of the breakdown); (2) whether the system attempts to repair (e.g., provide
options of potential intents), and (3) whether assistance is provided for user self-
repair (e.g., highlight the keywords that contribute to the intent classifier’s decision).
Among them, the most preferred option by the users was to have the system attempt
to help with the repair process by providing options of potential intents. However,
as discussed, this approach requires domain-specific “deep knowledge” about the
task and error handling flows manually programmed by the developers [5, 107],
and therefore, is not practical for user-instructed tasks. The second most preferred
strategy in [8] was for the system to provide more transparency into the cause of the
breakdown, such as highlighting the keywords that contribute to the results.

Informed by these results, we developed Sovite,4 a new interface for Sugilite
that helps users discover, identify the causes of, and recover from conversational
breakdowns using a app-grounded multi-modal approach (Fig. 5). Compared with

4 Sovite is named after a type of rock. It is also an acronym for System for Optimizing Voice
Interfaces to Tackle Errors.



T. J.-J. Li et al.

the domain-specific approaches that require “deep knowledge”, our approach does
not require any additional efforts from the developers. It only requires “shallow
knowledge” in a domain-general generic language model to map user intents to the
corresponding app screens.

5.5.1 The Design of the Breakdown Handling Interface

Communicating System State with App GUI Screenshots

The first step for Sovite in supporting the users in repairing conversational break-
downs is to provide transparency into the state of understanding in the system, allow-
ing the users to discover breakdowns and identify their causes. Sovite leverages the
GUI screenshots of mobile apps for this purpose. As shown in Fig. 5a, for the user
command, Sovite displays one or more (when there are multiple slots spanning
many screens) screenshots from an app that corresponds to the detected user intent.
For intents with slots, it shows screens that contain the GUI widgets corresponding
to where the slots would be filled if the task was performed manually using the app
GUI. Sovite also adds a highlight overlay, shown in yellow in Fig. 5a, on top of
the app’s GUI, which indicates the current slot value. If the slot represents selecting
an item from a menu in the GUI, then the corresponding menu item will be high-
lighted on the screenshot. For an intent without a slot, Sovite displays the last GUI
screen from the procedure of performing the task manually, which usually shows
the result of the task. After displaying the screenshot(s), Sovite asks the user to
confirm the understanding of the user’s intent. by asking, “I will…[the task],
is this correct?”, to which the user can verbally respond.

Design Rationale Sovite’s references to app GUIs help with grounding in human-
agent interactions. In communication theory, the concept of grounding describes
conversation as a form of collaborative action to come up with common ground or
mutual knowledge [35]. For conversations with computing systems, when the user
provides an utterance, the system should provide evidence of understanding so that
the user can evaluate the progress toward their goal [26]. As described in the gulf
of evaluation and gulf of execution framework [54, 118] and shown in prior studies
of conversational agents [8, 14], execution and evaluation are interdependent—in
order to choose an effective strategy for repairing a conversational breakdown, the
user needs to first know the current state of understanding in the system and be able
to understand the cause of the breakdown. We believe this approach should help
users to more effectively identify the understanding errors because it provides better
closeness of mapping [46] to how the user would naturally approach this task.

Intent Detection Repair with App GUI References

When an intent detection result is incorrect, as evidenced by the wrong app or the
wrong functionality of app shown in a confirmation screenshot, or when the agent
fails to detect an intent from the user’s initial utterance at all (i.e., the system responds



Demonstration + Natural Language: Multimodal Interfaces …

“I don’t understand the command.”), the user canfix the error by indicating the correct
apps and app screens for their desired task.

References to Apps After the user says that the detected intent is incorrect after
seeing the app GUI screenshots, or when the system fails to detect an intent, Sovite
asks the user “What app should I use to perform…[the task]?”, for which the
user can say the name of an app for the intended task (shown in Fig. 5b). Sovite
looks up the collection of all supported task intents for not only the intents that use
this underlying app, but also intents that are semantically related to the supplied app.

References to App Screens In certain situations, the user’s intent can still be ambigu-
ous after the user indicates the name of an app; there can be multiple intents asso-
ciated with the app (for example, if the user specifies “Expedia” which can be used
for booking flights, cruises, or rental cars), or there can be no supported task intent
in the user-provided app and no intent that meets the threshold of being sufficiently
“related” to the user-provided app. In these situations, Sovite will ask the user a
follow-up question “Can you show me which screen in…[the app]] is most rel-
evant to…[the task]?” (shown in Fig. 5c). Sovite then launches the app and
asks the user to navigate to the target screen in the app. Sovite then finds intents
that are the most semantically related to this app screen among the ambiguous ones,
or asks the user to teach it a new one by demonstration.

Ease of Transition to Out-of-Domain Task Instructions An important advantage
of Sovite’s intent disambiguation approach is that it supports the easy transition to
the user instruction of a new task when the user’s intended task is out of scope.
An effective approach to support handling out of scope errors is programming-
by-demonstration (PBD) [85]. Sovite’s approach can directly connect to the user
instruction mode in Sugilite. Since at this point, Sovite already knows the most
relevant app and app screen for the user’s intended task and how to navigate to this
screen in the app, it can simply ask the user “Can you teach me how to…[the
task] using…[the app] in this screen”, switch back to this screen, and have
the user to continue demonstrating the intended task to teach the agent how to fulfill
the previously out of scope task intent. The user may also start over and demonstrate
from scratch if they do not want to start the instruction from this screen.

Design Rationale The main design rationale of supporting intent detection repairs
with app GUI references is to make Sovite’s mechanism of fixing intent detection
errors consistent with how users discover the errors from Sovite’s display of intent
detection results.When users discover the intent detection errors by seeing the wrong
apps or the wrong screens displayed in the confirmation screenshots, the most intu-
itive way for them to fix these errors is to indicate the correct apps and screens that
should be used for the intended tasks. Their references to the apps and the screens
also allow Sovite to extract richer semantic context (e.g., the app store descriptions
and the text labels found on app GUI screens) than having the user simply rephrase
their utterances, helping with finding semantically related task intents.



T. J.-J. Li et al.

Fig. 6 Sovite provides multiple ways to fix text-input slot value errors: LEFT : the user can click
the corresponding highlight overlay and change its value by adjusting the selection in the original
utterance, speaking a new value, or just typing in a new value.RIGHT : the user can drag the overlays
on the screenshot to move a value to a new slot, or swap the values between two slots

Slot Value Extraction Repair with Direct Manipulation

If the user finds that the intent is correct (i.e., the displayed app and app screen
correctly match the user’s intended task), but there are errors in the extracted task
slot values (i.e., the highlighted textboxes, the values in the highlighted textboxes,
or the highlighted menu items on the confirmation screenshots are wrong), the user
can fix these errors using direct manipulation on the screenshots.

All the highlight overlays for task slots can be dragged-and-dropped. For slots
represented by GUI menu selections, the user can simply drag the highlight overlay
to select a different item, as shown in Fig. 5a. The same interaction technique also
works for fixing mismatches in the text-input type slot values. For example, if the
agent swaps the order between starting location and destination in a “requesting Uber
ride” intent, the user can drag these overlays with location names to move them to
the right fields in the app GUI screenshot (Fig. 6). When a field is dragged to another
field that already has a value, Sovite performs a swap rather than a replace so as not
to lose any user-supplied data.

Alternatively, when the value for a text-input type slot is incorrect, the user can
repair it using the popup dialog shown in Fig. 6. After the user clicks on the highlight
overlay for a text-input slot, a dialog will pop up, showing the slot’s current value in
the user’s original utterance. The user can adjust the text selection by dragging the
highlight boundaries in the identified entities. The same dialog alternatively allows
the user to just enter a new slot value by speech or typing.

Design Rationale We believe these direct manipulation interactions in Sovite are
intuitive to the users. The positions and the contents of the highlight overlays repre-
sent where and what slot values would be entered if the task was performed using the
GUI of the corresponding app. Therefore, if what Sovite identified does not match



Demonstration + Natural Language: Multimodal Interfaces …

what the users would do for the intended task, the users can directly fix these incon-
sistencies through simple physical actions such as drag-and-drop and text selection
gestures, and see immediate feedback on the screenshots,which aremajor advantages
of direct manipulation [134].

5.6 The Semantic Representation of GUIs

With the rise of data-driven computational methods for modeling user interactions
with graphical user interfaces (GUIs), the GUI screens have become not only inter-
faces for human users to interact with the underlying computing services, but also
valuable data sources that encode the underlying task flow, the supported user inter-
actions, and the design patterns of the corresponding apps, which have proven useful
for AI-powered applications. For example, programming-by-demonstration (PBD)
intelligent agents such as [80, 88, 132] use task-relevant entities and hierarchical
structures extracted from GUIs to parameterize, disambiguate, and handle errors in
user-demonstrated task automation scripts. Erica [39] mines a large repository of
mobile app GUIs to enable user interface (UI) designers to search for example design
patterns to inform their own design. Kite [89] extracts task flows from mobile app
GUIs to bootstrap conversational agents.

We present a new self-supervised technique Screen2Vec for generating seman-
tic representations of GUI screens and components using their textual content, visual
design and layout patterns, and app context metadata. Screen2Vec’s approach
is inspired by the popular word embedding method Word2Vec [111], where
the embedding vector representations of GUI screens and components are gener-
ated through the process of training a prediction model. But unlike Word2Vec,
Screen2Vec uses a two-layer pipeline informed by the structures of GUIs and
GUI interaction traces and incorporates screen- and app-specific metadata.

The embedding vector representations produced by Screen2Vec can be used in
avariety of useful downstream tasks such as nearest neighbor retrieval, composability-
based retrieval, and representing mobile tasks. The self-supervised nature of
Screen2Vec allows its model to be trained without any manual data labeling
efforts—it can be trained with a large collection of GUI screens and the user inter-
action traces on these screens such as the Rico [38] dataset.

Screen2Vec addresses an important gap in prior work about computational
HCI research. The lack of comprehensive semantic representations of GUI screens
and components has been identified as a major limitation in prior work in GUI-based
interactive task learning (e.g., [88, 132]), intelligent suggestive interfaces (e.g., [30]),
assistive tools (e.g., [19]), and GUI design aids (e.g., [72, 139]). Screen2Vec
embeddings can encode the semantics, contexts, layouts, and patterns of GUIs, pro-
viding representations of these types of information in a form that can be easily and
effectively incorporated into popular modern machine learning models.



T. J.-J. Li et al.

Fig. 7 The two-level architecture of Screen2Vec for generating GUI component and screen
embeddings. The weights for the steps in teal color are optimized during the training process

5.6.1 Screen2Vec’s Approach

Figure 7 illustrates the architecture of Screen2Vec. Overall, the pipeline of
Screen2Vec consists of two levels: the GUI component level (shown in the gray
shade) and the GUI screen level. We will describe the approach at a high-level here,
you may refer to [87] for the implementation details.

The GUI component level model encodes the textual content and the class type
of a GUI component into a 768-dimensional embedding vector to represent the
GUI component (e.g., a button, a textbox, a list entry etc.) This GUI component
embedding vector is computed with two inputs: (1) a 768-dimensional embedding
vector of the text label of the GUI component, encoded using a pre-trained Sentence-
BERT [128] model; and (2) a 6-dimensional class embedding vector that represents
the class type of theGUI component. The two embedding vectors are combined using
a linear layer, resulting in the 768-dimensional GUI component embedding vector
that represents the GUI component. The class embeddings in the class type embedder
and the weights in the linear layer are optimized through training a Continuous Bag-
of-Words (CBOW) prediction task: for each GUI component on each screen, the
task predicts the current GUI component using its context (i.e., all the other GUI
components on the same screen). The training process optimizes the weights in the
class embeddings and theweights in the linear layer for combining the text embedding
and the class embedding.

The GUI screen level model encodes the textual content, visual design and lay-
out patterns, and app context of a GUI screen into an 1536-dimensional embedding
vector. This GUI screen embedding vector is computed using three inputs: (1) the
collection of the GUI component embedding vectors for all the GUI components on
the screen (as described in the last paragraph), combined into a 768-dimension vector
using a recurrent neural network model (RNN); (2) a 64-dimensional layout embed-
ding vector that encodes the screen’s visual layout; and (3) a 768-dimensional embed-
ding vector of the textual App Store description for the underlying app, encoded with



Demonstration + Natural Language: Multimodal Interfaces …

a pre-trained Sentence-BERT [128] model. These GUI and layout vectors are com-
bined using a linear layer, resulting in a 768-dimensional vector. After training, the
description embedding vector is concatenated on, resulting in the 1536-dimensional
GUI screen embedding vector (if included in the training, the description dominates
the entire embedding, overshadowing information specific to that screen within the
app). The weights in the RNN layer for combining GUI component embeddings and
the weights in the linear layer for producing the final output vector are similarly
trained on a CBOW prediction task on a large number of interaction traces (each
represented as a sequence of screens). For each trace, a sliding window moves over
the sequence of screens. The model tries to use the representation of the context (the
surrounding screens) to predict the screen in the middle.

In the training process, we trained Screen2Vec5 on the open-sourced Rico6

dataset [38]. The Rico dataset contains interaction traces on 66,261 unique GUI
screens from 9,384 free Android apps collected using a hybrid crowdsourcing plus
automated discovery approach. The models are trained on a cross entropy loss func-
tion with an Adam optimizer [63]. In training the GUI screen embedding model,
we use negative sampling [110, 111] so that we do not have to recalculate and
update every screen’s embedding on every training iteration, which is computation-
ally expensive and prone to over-fitting. In each iteration, the prediction is compared
to the correct screen and a sample of negative data that consists of: a random sampling
of size 128 of other screens, the other screens in the batch, and the screens in the
same trace as the correct screen, used in the prediction task. We specifically include
the screens in the same trace to promote screen-specific learning in this process: This
way, we can disincentive screen embeddings that are based solely on the app7, and
emphasize on having the model learn to differentiate the different screens within the
same app. You can refer to [87] for details on the training process.

Prediction Task Results

In the screen prediction task, the Screen2Vec model performs better than three
baseline models (TextOnly, LayoutOnly, and VisualOnly; see [87] for
details on the baseline models) in top-1 prediction accuracy, top-k prediction accu-
racy, and the normalized rooted mean square error (RMSE) of the predicted screen
embedding vector. See [87] for details on the results and the relevant discussions.

5 Available at: https://github.com/tobyli/screen2vec.
6 Available at: http://interactionmining.org/rico.
7 Since the next screen is always within the same app, and therefore, shares an app description
embedding, the prediction task favors having information about the specific app (i.e., app store
description embedding) dominate the embedding

https://github.com/tobyli/screen2vec
http://interactionmining.org/rico


T. J.-J. Li et al.

5.6.2 Sample Downstream Tasks

Nearest Neighbors

The nearest neighbor task is useful for data-driven design, where the designers want
to find examples for inspiration and for understanding the possible design solu-
tions [38]. The task focuses on the similarity between GUI screen embeddings: for
a given screen, what are the top-N most similar screens in the dataset? The similar
technique can also be used for unsupervised clustering in the dataset to infer different
types of GUI screens. In our context, this task also helps demonstrate the different
characteristics between Screen2Vec and the three baseline models.

We conducted a study with 79 Mechanical Turk workers, where we compared the
human-rated similarity of the nearest neighbors results generated by Screen2Vec
with the baseline models on 5,608 pairs of screen instances. The Mechanical Turk
workers rated the nearest neighbor screens generated by the Screen2Vec model
to be, on average, more similar (p < 0.0001) to their source screens than the nearest
neighbor screens generated by the baseline models (details on study design and
results in [87]).

Subjectively, when looking at the nearest neighbor results, we can see the different
aspects of theGUI screens that each differentmodel captures.Screen2Vec can cre-
atemore comprehensive representations that encode the textual content, visual design
and layout patterns, and app contexts of the screen compared with the two baselines,
which only capture one or two aspects. For example, Fig. 8 shows the example nearest
neighbor results for the “request ride” screen in the Lyft app. Screen2Vec model
retrives the “get direction” screen in the Uber Driver app, “select navigation type”
screen in the Waze app, and “request ride” screen in the Free Now (My Taxi) app.
Visual and component layout wise, the result screens all feature a menu/information
card at the bottom 1/3 to 1/4 of the screen, with a MapView taking themajority of the
screen space. Content and app domainwise, all these screens are from transportation-
related apps that allow the user to configure a trip. In comparison, the TextOnly
model retrieves the “request ride” screen from the zTrip app, the “main menu” screen
from the Hailo app (both zTrip and Hailo are taxi hailing apps), and the home screen
of the Paytm app (a mobile payment app in India). The commonality of these screens
is that they all include text strings that are semantically similar to “payment” (e.g.,
add payment type, wallet, pay, add money), and texts that are semantically similar
to “destination” and “trips” (e.g., drop off location, trips, bus, flights). But the model
neither considers the visual layout and design patterns of the screens, nor the app
context. Therefore, the result contains the “main menu” (a quite different type of
screen) in the Hailo app and the “home screen” in the Paytm app (a quite different
type of screen in a different type of app). The LayoutOnly model, on the other
hand, retrieves the “exercise logging” screens from the Map My Walk app and the
Map My Ride app, and the tutorial screen from the Clever Dialer app. We can see
that the content and app-context similarity of the result of the LayoutOnly model
is quite lower than those of the Screen2Vec and TextOnly models. However,
the result screens all share similar layout features as the source screen, such as the



Demonstration + Natural Language: Multimodal Interfaces …

Fig. 8 The example nearest neighbor results for the Lyft “request ride” screen generated by the
Screen2Vec, TextOnly, and LayoutOnly models

menu/information card at the bottom of the screen and the screen-wide button at the
bottom of the menu (Fig. 8).

Embedding Composability

A useful property of embeddings is that they are composable—meaning that we can
add, subtract, and average embeddings to form a meaningful new one. This prop-
erty is commonly used in word embeddings. For example, in Word2Vec, analogies
such as “man is to woman as brother is to sister” is reflected in that the vector
(man − woman) is similar to the vector (brother − sister). Besides represent-
ing analogies, this embedding composability can also be utilized for generative
purposes—for example, (brother − man + woman) results in an embedding vector
that represents “sister”.

This property is also useful in screen embeddings. For example, we can run
a nearest neighbor query on the composite embedding of (Marriott app ’s “hotel
booking” screen+ (Cheapoair app’s “search result” screen−Cheapoair app’s “hotel
booking” screen)). The top result is the “search result” screen in the Marriott app.



T. J.-J. Li et al.

Fig. 9 An example showing the composability of Screen2Vec embeddings: running the nearest
neighbor query on the composite embedding of (Marriott app ’s hotel booking page + Cheapoair
app’s hotel booking page−Cheapoair app’s search result page) can match theMarriott app’s search
result page, and the similar pages of a few other travel apps

When we filter the result to focus on screens from apps other than Marriott, we get
screens that show list results of items from other travel-related apps such as Booking,
Last Minute Travel, and Caesars Rewards.

The composability can make Screen2Vec particularly useful for GUI design
purposes—the designer can leverage the composability to find inspiring examples
of GUI designs and layouts.

Screen Embedding Sequences for Representing Mobile Tasks

GUI screens are not only useful data sources individually on their own, but also as
building blocks to represent a user’s task.A task in an app, or acrossmultiple apps, can
be represented as a sequence of GUI screens that makes up the user interaction trace
of performing this task through app GUIs. We conduct a preliminary evaluation on
the effectiveness of embedding mobile tasks as sequences of Screen2Vec screen
embedding vectors (details in [87]).

While the task embedding method we explored is quite primitive, it illustrates
that the Screen2Vec technique can be used to effectively encode mobile tasks
into the vector space where semantically similar tasks are close to each other. For
the next steps, we plan to further explore this direction. For example, the current
method of averaging all the screen embedding vectors does not consider the order



Demonstration + Natural Language: Multimodal Interfaces …

of the screens in the sequence. In the future, we may collect a dataset of human
annotations of task similarity, and use techniques that can encode the sequences of
items, such as recurrent neural networks (RNN) and long short-termmemory (LSTM)
networks, to create the task embeddings from sequences of screen embeddings. We
may also incorporate the Screen2Vec embeddings of the GUI components that
were interactedwith (e.g., the button that was clicked on) to initiate the screen change
into the pipeline for embedding tasks.

5.6.3 Potential Applications of Screen2Vec

This section describes several potential applications where the new Screen2Vec
technique can be useful based on the downstream tasks described in Sect. 5.6.2.

Screen2Vec can enable new GUI design aids that take advantage of the nearest
neighbor similarity and composability of Screen2Vec embeddings. Prior work
such as [38, 52, 66] has shown that data-driven tools that enable designers to
curate design examples are quite useful for interface designers. Unlike [38], which
uses a content-agnostic approach that focuses on the visual and layout similarities,
Screen2Vec considers the textual content and appmetadata in addition to the visual
and layout patterns, often leading to different nearest neighbor results as discussed
in section. This new type of similarity results will also be useful when focusing on
interface design beyond just visual and layout issues, as the results enable designers
to query, for example, designs that display similar content or screens that are used
in apps in a similar domain. The composability in Screen2Vec embeddings enables
querying for design examples at a finer granularity. For example, suppose a designer
wishes to find examples for inspiring the design of a new checkout page for app A.
They may query for the nearest neighbors of the synthesized embedding App A’s
order page+ (App B’s checkout page−AppB’s order page). Compared with simply
querying for the nearest neighbors of App B’s checkout page, this synthesized query
can encode the interaction context (i.e., the desired page should be the checkout page
for App A’s order page) in addition to the “checkout” semantics.

The Screen2Vec embeddings can also be useful in generative GUI models.
Recent models such as the neural design network (NDN) [73] and LayoutGAN [79]
can generate realistic GUI layouts based on user-specified constraints (e.g., align-
ments, relative positions between GUI components). Screen2Vec can be used in
these generative approaches to incorporate the semantics of GUIs and the contexts
of how each GUI screen and component gets used in user interactions. For exam-
ple, the GUI component prediction model can estimate the likelihood of each GUI
component given the context of the other components in a generated screen, pro-
viding a heuristic of how likely the GUI components can fit well with each other.
Similarly, the GUI screen prediction model may be used as a heuristic to synthesize
GUI screens that can better fit with the other screens in the planned user interaction
flows. Since Screen2Vec has been shown effective in representing mobile tasks
in Sect. 5.6.2, where similar tasks will yield similar embeddings, one may also use
the task embeddings of performing the same task on an existing app to inform the



T. J.-J. Li et al.

generation of new screen designs. The embedding vector form of Screen2Vec
representations made them particularly suitable for use in the recent neural network
based generative models.

Screen2Vec’s capability of embedding tasks can also enhance interactive
task learning systems. Specifically, Screen2Vec may be used to enable more
powerful procedure generalizations of the learned tasks. We have shown that the
Screen2Vec model can effectively predict screens in an interaction trace. Results
in Sect. 5.6.2 also indicated that Screen2Vec can embed mobile tasks so that
the interaction traces of completing the same task in different apps will be similar
to each other in the embedding vector space. Therefore, it is quite promising that
Screen2Vecmay be used to generalize a task learned from the user by demonstra-
tion in one app to another app in the same domain (e.g., generalizing the procedure of
ordering coffee in the Starbucks app to the Dunkin’ Donut app). In the future, we plan
to further explore this direction by incorporating Screen2Vec into open-sourced
mobile interactive task learning agents such as Sugilite.

6 User Evaluations

We conducted several lab user studies to evaluate the usability, efficiency, and effec-
tiveness of Sugilite. The results of these study showed that end users without signif-
icant programming expertise were able to successfully teach the agent the procedures
of performing common tasks (e.g., ordering pizza, requesting Uber, checking sports
score, ordering coffee) [80], conditional rules for triggering the tasks [88], and con-
cepts relevant to the tasks (e.g., the weather is hot, the traffic is heavy) [88] using
Sugilite. The users were also able to clarify their intents when ambiguities arise [84]
and successfully discover, identify the sources of, and repair conversational break-
downs caused by natural language understanding errors [82].Most of our participants
found Sugilite easy and natural to use [80, 84, 88]. Efficiency wise, teaching a task
usually took the user 3–6 times longer than how long it took to perform the task
manually in our studies [80], which indicates that teaching a task using Sugilite can
save time for many repetitive tasks.

7 Limitations

7.1 Platform

Sugilite and its follow-up work have been developed and tested only on Android
phones. Sugilite retrieves the hierarchical tree structure of the current GUI screen
and manipulates the app GUI through Android’s Accessibility API. However, the
approach used in Sugilite should apply to any GUI-based apps with hierarchical-



Demonstration + Natural Language: Multimodal Interfaces …

based structures (e.g., the hierarchical DOM structures in web apps). In certain
platforms like iOS, while the app GUIs still use hierarchical tree structures, the
access to extracting information from and sending inputs to third-party apps has
been restricted by the operating system due to security and privacy concerns. In such
platforms, implementing a Sugilite-like system likely requires collaboration with
the OS provider (e.g., Apple) or limiting the domain to first-party apps. We also
expect working with desktop apps to be more challenging than with mobile apps due
to the increased difficulty in inferring their GUI semantics, as the desktop apps often
have more complex layouts and more heterogeneous design patterns.

7.2 Runtime Efficiency

An important characteristic of Sugilite is that it interacts with the underlying third-
party app in the same way as a human user do, meaning that it reads information by
navigating to the corresponding app screen through the app GUI menu and performs
a task by manipulating the app GUI controls. While this approach provides excellent
applicability for Sugilite, allowing the invocation of millions of existing third-party
apps without any modification to these apps, it also means that performing a task in
Sugilite is much slower than in an agent that directly invokes the under-the-hood
API. It usually takes Sugilite a few seconds to execute a task automation script.
This includes the time needed for Sugilite to process each screen, plus the extra
time for the underlying app to load and to render its GUI.

Another implication of how Sugilite interacts with the underlying apps is that
it needs to run in the foreground of the phone. If an automation script is triggered
when the user is actively using the phone at the same time, the user’s current task
will be interrupted. Similarly, if an external event (e.g., an incoming phone call)
interrupts in the middle of executing an automation script, the script execution may
fail. One possible way to address the problem is to execute Sugilite scripts in a
virtual machine running in the background, similar to X-Droid [62]. We will leave
this for future work.

7.3 Expressiveness

Sugilite has made several contributions in improving the user expressiveness in
programming by demonstration and interactive task learning systems.However, there
are still several limitations in Sugilite’s expressiveness, which we plan to address
in future work.

The first type of limitations originates from Sugilite’s domain-specific language
(DSL) used to specify its automation scripts. For example, it has no support for nested
arithmetic operations in the DSL (e.g., one can say “if the price of a Uber ride is
greater than 10 dollars” and “if the price of a Uber ride is greater than the price of a



526 T. J.-J. Li et al.

Lyft ride”, but not “if the price of aUber ride is at least 10 dollarsmore expensive than
the price of a Lyft ride.”) mostly due to the extra complication in semantic parsing.
Correctly parsing the user’s natural language description of arithmetic operations
into our DSL would likely require a more complicated parsing architecture with a
much larger training corpus. It also does not support loops in automation (e.g., “order
one of each item in the “Espresso Drinks” category in the Starbucks app”). This is
due to Sugilite’s limited capability to capture the internal “states” within the apps
and to return to a specific previous state. For example, in the “ordering one of each
item” task, the agent needs to return to the GUI state showing the list of items after
completing the ordering of the first item in order to order the second item. This
cannot be easily done with the current Sugilite agent. Even if Sugilitewas able to
find the “same” (visually similar or have the same activity name) screen, Sugilite
cannot know if the internal state of the underlying app has changed (e.g., adding the
first item to the cart affects what other items are available for purchase).

Another limitation in expressiveness is due to the input modalities that Sugilite
tracks in the user demonstrations—it only records a set of common input types
(clicks, long-clicks, text entries, etc.) on app GUIs. Gestures (e.g., swipes, flicks),
sensory inputs (e.g., tilting or shaking the phone detected by the accelerometer and
the gyroscope, auditory inputs from the microphone), and visual inputs (from the
phone camera) are not recorded.

7.4 Brittleness

While many measures have been taken to help Sugilite handle minor changes in
app GUIs, Sugilite scripts can still be brittle after the a change in the underlying
app GUI due to either an app update or an external event. As discussed in Sect. 5.2,
Sugilite uses a graph query to locate the correct GUI element to operate on when
executing an automation script. Instead of using the absolute (x, y) coordinates for
identifying a GUI element like some prior systems do, Sugilite picks one or more
features such as the text label, the ordinal position in a list (e.g., first item in the search
result), or the relative position to another GUI element (e.g., the “book” button next to
the cheapest flight) that corresponds to the user’s intent. Therefore, if a GUI change
does not affect the result of the graph query, the automation should still work. In the
future, it is possible to further enhance Sugilite’s capability of understanding screen
semantics, so that it can automatically detect and handle some of these unexpected
screens that do not affect the task without user intervention.



Demonstration + Natural Language: Multimodal Interfaces …

8 Future Work

8.1 Generalization in Programming by Demonstration

Generalization is a central challenge in programming by demonstration [37, 94].
Sugilite hasmade several important improvements to the generalization capabilities
of the current state-of-art programming by demonstration systems through (1) its
multi-modal approach for parameterizing task procedures by combining entities from
the user’s spoken instructions with information extracted from the hierarchical app
GUI structures; and (2) its app-based abstraction model for generalizing learned
concepts such as “hot” and “busy” across different apps.

However, there are still opportunities for supportingmore powerful generalization.
The embedding technique described in Sect. 5.6 opens up the opportunity of cross-
app generalization, i.e., when the user has taught performing a task in an app, can the
agent generalize the learned procedure to perform a similar task in a different app?
Sect. 5.6.2 shows that a task procedure can be represented as a sequence of actions
that each consists of (1) the embedding of the screen where the action is performed;
and (2) the embedding of theGUI component onwhich the action is performed, while
Sect. 5.6.2 illustrates that it is feasible to find the “equivalence” of a screen in a new
app (e.g., locating the search screen in theCheapoair app based on the search screen in
the Marriott app) through arithmetic operations on the screen embeddings. In future
work, We plan to explore the design of new mechanisms and their corresponding
interfaces that leverage these characteristics of screen embeddings to allow the agent
to generalize the learned tasks across different apps with the help from the user.

This approach is inspired by our observation on how human users use unfamiliar
apps. In most cases, a user would be able to use an unfamiliar app to perform a task
if they have used a similar app before because (1) they have the domain-agnostic
knowledge of how mobile apps generally work; and (2) they have the app-agnostic
knowledge about the task domain. In this planned approach, the domain-agnostic
knowledge of app design patterns and layouts is encoded in the app screen embed-
ding model, while the task-domain-specific knowledge can be acquired by the agent
through the user’s instruction of a similar task in a different app.

Another opportunity for facilitating generalization is to enhance the reason-
ing of user intents by connecting to large pre-trained commonsense models like
COMET [24] and Atomic [131]. While the current Suglite agent can be taught
new concepts (e.g., hot, busy, and late), procedures (e.g., setting alarms and request-
ing Uber rides), and if-else rules, the agent does not understand the rationale and
reasoning process among these entities (e.g., the user requests a Uber ride when it
is late because the Uber ride is faster and the user does not want to be late for an
event). Understanding such rationale would allow the agent to better generalize user
instructions to different contexts and to suggest alternative approaches.



T. J.-J. Li et al.

8.2 Field Study of SUGILITE

Another future direction is to study the user adoption of Sugilite through a lon-
gitudinal field study. While the usability and the effectiveness of Sugilite have
been validated through task-based lab studies, deploying it to actual users can still
be useful for (i) further validating the feasibility and robustness of the system in
various contexts, (ii) measuring the usefulness of Sugilite in real-life scenarios,
and (iii) studying the characteristics of how users use Sugilite. The key goal of the
deployment is to study Sugilite within its intended context of use.

9 Conclusion

We described Sugilite, a task automation agent that can learn new tasks and rele-
vant concepts interactively from users through their GUI-grounded natural language
instructions and demonstrations. This system provides capabilities such as intent
clarification, task parameterization, concept generalization, breakdown repairs, and
embedding the semantics of GUI screens. Sugilite shows the promise of using app
GUIs for grounding natural language instructions, and the effectiveness of resolv-
ing unknown concepts, ambiguities, and vagueness in natural language instructions
using a mixed-initiative multi-modal approach.

Acknowledgements This research was supported in part by Verizon through the Yahoo! InMind
project, a J.P. Morgan Faculty Research Award, NSF grant IIS-1814472, AFOSR grant
FA95501710218, and Google Cloud Research Credits. Any opinions, findings or recommenda-
tions expressed here are those of the authors and do not necessarily reflect views of the sponsors.
We thank Amos Azaria, Yuanchun Li, Fanglin Chen, Igor Labutov, Xiaohan Nancy Li, Xiaoyi
Zhang, Wenze Shi, Wanling Ding, Marissa Radensky, Justin Jia, Kirielle Singarajah, Jingya Chen,
Brandon Canfield, Haijun Xia, and Lindsay Popowski for their contributions to this project.

References

1. Adar E, Dontcheva M, Laput G (2014) CommandSpace: modeling the relationships between
tasks, descriptions and features. In: Proceedings of the 27th annual ACM symposium on
user interface software and technology, UIST ’14, pp 167–176. ACM, New York, NY, USA.
https://doi.org/10.1145/2642918.2647395. http://doi.acm.org/10.1145/2642918.2647395

2. Alharbi K, Yeh T (2015) Collect, decompile, extract, stats, and diff: mining design pattern
changes in android apps. In: Proceedings of the 17th international conference on human-
computer interaction with mobile devices and services, MobileHCI ’15, pp 515–524. ACM,
NewYork, NY,USA. https://doi.org/10.1145/2785830.2785892. http://doi.acm.org/10.1145/
2785830.2785892

3. Allen J, Chambers N, Ferguson G, Galescu L, Jung H, Swift M, Taysom W (2007) PLOW: a
collaborative task learning agent. In: Proceedings of the 22Nd national conference on artificial
intelligence - volume 2, AAAI’07, pp 1514–1519. AAAI Press, Vancouver, British Columbia,
Canada

https://doi.org/10.1145/2642918.2647395
http://doi.acm.org/10.1145/2642918.2647395
https://doi.org/10.1145/2785830.2785892
http://doi.acm.org/10.1145/2785830.2785892
http://doi.acm.org/10.1145/2785830.2785892


Demonstration + Natural Language: Multimodal Interfaces …

4. Allen JF, Guinn CI, Horvtz E (1999) Mixed-initiative interaction. IEEE Intell Syst Appl
14(5):14–23

5. Amazon: Alexa Design Guide (2020). https://developer.amazon.com/en-US/docs/alexa/
alexa-design/get-started.html

6. Antila V, Polet J, Lämsä A, Liikka J (2012) RoutineMaker: towards end-user automation
of daily routines using smartphones. In: 2012 IEEE international conference on pervasive
computing and communications workshops (PERCOMworkshops), pp 399–402. https://doi.
org/10.1109/PerComW.2012.6197519

7. Argall BD,ChernovaS,VelosoM,BrowningB (2009)A survey of robot learning fromdemon-
stration. Robot Auton Syst 57(5):469–483. https://doi.org/10.1016/j.robot.2008.10.024

8. Ashktorab Z, JainM, LiaoQV,Weisz JD (2019) Resilient chatbots: repair strategy preferences
for conversational breakdowns. In: Proceedings of the 2019 CHI conference on human factors
in computing systems, p 254. ACM

9. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus
for a web of open data. The semantic web, pp 722–735. http://www.springerlink.com/index/
rm32474088w54378.pdf

10. Azaria A, Krishnamurthy J, Mitchell TM (2016) Instructable intelligent personal agent. In:
Proceedings of the 30th AAAI conference on artificial intelligence (AAAI), vol 4

11. Ballard BW, Biermann AW (1979) Programming in natural language “NLC” as a prototype.
In: Proceedings of the 1979 annual conference, ACM ’79, pp 228–237. ACM, NewYork, NY,
USA. https://doi.org/10.1145/800177.810072. http://doi.acm.org/10.1145/800177.810072

12. Banovic N, Grossman T, Matejka J, Fitzmaurice G (2012) Waken: reverse engineering usage
information and interface structure from software videos. In: Proceedings of the 25th annual
ACM symposium on user interface software and technology, UIST ’12, pp 83–92. ACM,
NewYork, NY,USA. https://doi.org/10.1145/2380116.2380129. http://doi.acm.org/10.1145/
2380116.2380129

13. Barman S, Chasins S, Bodik R, Gulwani S (2016) Ringer: web automation by demonstration.
In: Proceedings of the 2016 ACM SIGPLAN international conference on object-oriented
programming, systems, languages, and applications, OOPSLA 2016, pp 748–764. ACM,
NewYork, NY,USA. https://doi.org/10.1145/2983990.2984020. http://doi.acm.org/10.1145/
2983990.2984020

14. Beneteau E, Richards OK, Zhang M, Kientz JA, Yip J, Hiniker A (2019) Communication
breakdowns between families and alexa. In: Proceedings of the 2019 CHI conference on
human factors in computing systems, CHI ’19, pp 243:1–243:13. ACM, NewYork, NY, USA.
https://doi.org/10.1145/3290605.3300473. http://doi.acm.org/10.1145/3290605.3300473

15. Bentley F, Luvogt C, SilvermanM,WirasingheR,White B, LottridgeD (2018)Understanding
the long-term use of smart speaker assistants. Proc ACM Interact Mob Wearable Ubiquitous
Technol 2(3). https://doi.org/10.1145/3264901

16. Berant J, Chou A, Frostig R, Liang P (2013) Semantic parsing on freebase from question-
answer pairs. In: Proceedings of the 2013 conference on empiricalmethods in natural language
processing, pp 1533–1544

17. Bergman L, Castelli V, Lau T, Oblinger D (2005) DocWizards: a system for authoring follow-
me documentation wizards. In: Proceedings of the 18th annual ACM symposium on user
interface software and technology, UIST ’05, pp 191–200. ACM, New York, NY, USA.
https://doi.org/10.1145/1095034.1095067. http://doi.acm.org/10.1145/1095034.1095067

18. Biermann AW (1983) Natural Language Programming. In: Biermann AW, Guiho G (eds)
Computer programsynthesismethodologies,NATOadvanced study institutes series. Springer,
Netherlands, pp 335–368

19. Bigham JP, Lau T, Nichols J (2009) Trailblazer: enabling blind users to blaze trails through
the web. In: Proceedings of the 14th international conference on intelligent user interfaces,
IUI ’09, pp 177–186. ACM, New York, NY, USA. https://doi.org/10.1145/1502650.1502677

20. Billard A, Calinon S, Dillmann R, Schaal S (2008) Robot programming by demonstration. In:
Springer handbook of robotics, pp 1371–1394. Springer. http://link.springer.com/10.1007/
978-3-540-30301-5_60

https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
https://developer.amazon.com/en-US/docs/alexa/alexa-design/get-started.html
https://doi.org/10.1109/PerComW.2012.6197519
https://doi.org/10.1109/PerComW.2012.6197519
https://doi.org/10.1016/j.robot.2008.10.024
http://www.springerlink.com/index/rm32474088w54378.pdf
http://www.springerlink.com/index/rm32474088w54378.pdf
https://doi.org/10.1145/800177.810072
http://doi.acm.org/10.1145/800177.810072
https://doi.org/10.1145/2380116.2380129
http://doi.acm.org/10.1145/2380116.2380129
http://doi.acm.org/10.1145/2380116.2380129
https://doi.org/10.1145/2983990.2984020
http://doi.acm.org/10.1145/2983990.2984020
http://doi.acm.org/10.1145/2983990.2984020
https://doi.org/10.1145/3290605.3300473
http://doi.acm.org/10.1145/3290605.3300473
https://doi.org/10.1145/3264901
https://doi.org/10.1145/1095034.1095067
http://doi.acm.org/10.1145/1095034.1095067
https://doi.org/10.1145/1502650.1502677
http://link.springer.com/10.1007/978-3-540-30301-5_60
http://link.springer.com/10.1007/978-3-540-30301-5_60


T. J.-J. Li et al.

21. Bohus D, Rudnicky AI (2005) Sorry, I didn’t catch that!-An investigation of non-
understanding errors and recovery strategies. In: 6th SIGdial workshop on discourse and
dialogue

22. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created
graph database for structuring human knowledge. In: Proceedings of the 2008ACMSIGMOD
international conference on Management of data, pp 1247–1250. ACM. http://dl.acm.org/
citation.cfm?id=1376746

23. Bolt RA (1980) “Put-that-there”: voice and gesture at the graphics interface. In: Proceedings
of the 7th annual conference on computer graphics and interactive techniques, SIGGRAPH
’80, pp 262–270. ACM, New York, NY, USA

24. BosselutA,RashkinH, SapM,MalaviyaC,CelikyilmazA,ChoiY (2019)COMET: common-
sense transformers for automatic knowledge graph construction. In: Proceedings of the 57th
annual meeting of the association for computational linguistics, pp 4762–4779. ACL, Flo-
rence, Italy. https://doi.org/10.18653/v1/P19-1470. https://www.aclweb.org/anthology/P19-
1470

25. Brennan SE (1991) Conversation with and through computers. User Model User-Adap Int
1(1):67–86. https://doi.org/10.1007/BF00158952

26. Brennan SE (1998) The grounding problem in conversations with and through computers.
Social and cognitive approaches to interpersonal communication, pp 201–225

27. Böhmer M, Hecht B, Schöning J, Krüger A, Bauer G (2011) Falling asleep with angry birds,
facebook and kindle: a large scale study on mobile application usage. In: Proceedings of
the 13th international conference on human computer interaction with mobile devices and
services, MobileHCI ’11, pp 47–56. ACM, New York, NY, USA. https://doi.org/10.1145/
2037373.2037383. http://doi.acm.org/10.1145/2037373.2037383

28. Chai JY, Gao Q, She L, Yang S, Saba-Sadiya S, Xu G (2018) Language to action: towards
interactive task learning with physical agents. In: IJCAI, pp 2–9

29. ChandramouliV,ChakrabortyA,NavdaV,GuhaS, PadmanabhanV,RamjeeR (2015) Insider:
towards breaking down mobile app silos. In: TRIOS workshop held in conjunction with the
SIGOPS SOSP 2015

30. Chen F, Xia K, Dhabalia K, Hong JI (2019) Messageontap: a suggestive interface to facilitate
messaging-related tasks. In: Proceedings of the 2019 CHI conference on human factors in
computing systems, CHI ’19. ACM, New York, NY, USA. https://doi.org/10.1145/3290605.
3300805

31. Chen J, Chen C, Xing Z, Xu X, Zhu L, Li G, Wang J (2020) Unblind your apps: predicting
natural-language labels for mobile gui components by deep learning. In: Proceedings of the
42nd international conference on software engineering, ICSE ’20

32. Chen JH, Weld DS (2008) Recovering from errors during programming by demonstration.
In: Proceedings of the 13th international conference on intelligent user interfaces, IUI ’08, pp
159–168. ACM, New York, NY, USA. https://doi.org/10.1145/1378773.1378794. http://doi.
acm.org/10.1145/1378773.1378794

33. Chkroun M, Azaria A (2019) Lia: a virtual assistant that can be taught new commands by
speech. Int J Hum–Comput Interact 1–12

34. Cho J, Rader E (2020) The role of conversational grounding in supporting symbiosis between
people and digital assistants. Proc ACM Hum-Comput Interact 4(CSCW1)

35. Clark HH, Brennan SE (1991) Grounding in communication. In: Perspectives on socially
shared cognition, pp 127–149. APA, Washington, DC, US. https://doi.org/10.1037/10096-
006

36. Cowan BR, Pantidi N, Coyle D, Morrissey K, Clarke P, Al-Shehri S, Earley D, Bandeira
N (2017) “what can i help you with?”: Infrequent users’ experiences of intelligent personal
assistants. In: Proceedings of the 19th international conferenceonhuman-computer interaction
withmobile devices and services,MobileHCI ’17, pp 43:1–43:12.ACM,NewYork,NY,USA.
https://doi.org/10.1145/3098279.3098539. http://doi.acm.org/10.1145/3098279.3098539

37. Cypher A, Halbert DC (1993) Watch what I do: programming by demonstration. MIT Press

http://dl.acm.org/citation.cfm?id=1376746
http://dl.acm.org/citation.cfm?id=1376746
https://doi.org/10.18653/v1/P19-1470
https://www.aclweb.org/anthology/P19-1470
https://www.aclweb.org/anthology/P19-1470
https://doi.org/10.1007/BF00158952
https://doi.org/10.1145/2037373.2037383
https://doi.org/10.1145/2037373.2037383
http://doi.acm.org/10.1145/2037373.2037383
https://doi.org/10.1145/3290605.3300805
https://doi.org/10.1145/3290605.3300805
https://doi.org/10.1145/1378773.1378794
http://doi.acm.org/10.1145/1378773.1378794
http://doi.acm.org/10.1145/1378773.1378794
https://doi.org/10.1037/10096-006
https://doi.org/10.1037/10096-006
https://doi.org/10.1145/3098279.3098539
http://doi.acm.org/10.1145/3098279.3098539


Demonstration + Natural Language: Multimodal Interfaces …

38. Deka B, Huang Z, Franzen C, Hibschman J, Afergan D, Li Y, Nichols J, Kumar R (2017)
Rico: a mobile app dataset for building data-driven design applications. In: Proceedings of
the 30th annual ACM symposium on user interface software and technology, UIST ’17, pp
845–854. ACM, New York, NY, USA. https://doi.org/10.1145/3126594.3126651. http://doi.
acm.org/10.1145/3126594.3126651

39. Deka B, Huang Z, Kumar R (2016) ERICA: interaction mining mobile apps. In: Proceedings
of the 29th annual symposium on user interface software and technology, UIST ’16, pp 767–
776. ACM, New York, NY, USA. https://doi.org/10.1145/2984511.2984581. http://doi.acm.
org/10.1145/2984511.2984581

40. Dixon M, Fogarty J (2010) Prefab: implementing advanced behaviors using pixel-based
reverse engineering of interface structure. In: Proceedings of the SIGCHI conference on
human factors in computing systems, CHI ’10, pp 1525–1534. ACM, New York, NY, USA.
https://doi.org/10.1145/1753326.1753554. http://doi.acm.org/10.1145/1753326.1753554

41. Dixon M, Leventhal D, Fogarty J (2011) Content and hierarchy in pixel-based methods for
reverse engineering interface structure. In: Proceedings of the SIGCHI conference on human
factors in computing systems, CHI ’11, pp 969–978. ACM, New York, NY, USA. https://doi.
org/10.1145/1978942.1979086. http://doi.acm.org/10.1145/1978942.1979086

42. Dixon M, Nied A, Fogarty J (2014) Prefab layers and prefab annotations: extensible pixel-
based interpretation of graphical interfaces. In: Proceedings of the 27th annual ACM sym-
posium on user interface software and technology, UIST ’14, pp 221–230. ACM, New York,
NY, USA. https://doi.org/10.1145/2642918.2647412. http://doi.acm.org/10.1145/2642918.
2647412

43. Fast E, Chen B, Mendelsohn J, Bassen J, Bernstein MS (2018) Iris: a conversational agent for
complex tasks. In: Proceedings of the 2018 CHI conference on human factors in computing
systems, CHI ’18, pp 473:1–473:12. ACM, New York, NY, USA. https://doi.org/10.1145/
3173574.3174047. http://doi.acm.org/10.1145/3173574.3174047

44. Gao X, Gong R, Zhao Y, Wang S, Shu T, Zhu SC (2020) Joint mind modeling for explanation
generation in complex human-robot collaborative tasks. In: 2020 29th IEEE international
conference on robot and human interactive communication (RO-MAN), pp 1119–1126. IEEE

45. Gluck KA, Laird JE (2019) Interactive task learning: humans, robots, and agents acquiring
new tasks through natural interactions, vol 26. MIT Press

46. Green TR (1989) Cognitive dimensions of notations. People and Computers V pp 443–460.
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&
dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_r0--
XLyLr6718

47. Grudin J, Jacques R (2019) Chatbots, humbots, and the quest for artificial general intelligence.
In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp 1–11

48. Guo A, Kong J, RiveraM, Xu FF, Bigham JP (2019) StateLens: a reverse engineering solution
for making existing dynamic touchscreens accessible. In: Proceedings of the 32nd annual
ACM symposium on user interface software and technology (UIST 2019), p 15

49. Gur I, Yavuz S, Su Y, Yan X (2018) DialSQL: dialogue based structured query generation. In:
Proceedings of the 56th annual meeting of the association for computational linguistics (vol-
ume 1: long papers), pp 1339–1349. ACL, Melbourne, Australia. https://doi.org/10.18653/
v1/P18-1124. https://www.aclweb.org/anthology/P18-1124

50. Hartmann B, Wu L, Collins K, Klemmer SR (2007) Programming by a sample: rapidly
creating web applications with d.mix. In: Proceedings of the 20th annual ACM symposium
on user interface software and technology,UIST ’07, pp 241–250.ACM,NewYork,NY,USA.
https://doi.org/10.1145/1294211.1294254. http://doi.acm.org/10.1145/1294211.1294254

51. Horvitz E (1999) Principles of mixed-initiative user interfaces. In: Proceedings of the SIGCHI
conference on human factors in computing systems, CHI ’99, pp 159–166. ACM, New York,
NY, USA. https://doi.org/10.1145/302979.303030

52. Huang F, Canny JF, Nichols J (2019) Swire: sketch-based user interface retrieval. In: Pro-
ceedings of the 2019 CHI conference on human factors in computing systems, CHI ’19, pp
1–10. ACM, New York, NY, USA. https://doi.org/10.1145/3290605.3300334

https://doi.org/10.1145/3126594.3126651
http://doi.acm.org/10.1145/3126594.3126651
http://doi.acm.org/10.1145/3126594.3126651
https://doi.org/10.1145/2984511.2984581
http://doi.acm.org/10.1145/2984511.2984581
http://doi.acm.org/10.1145/2984511.2984581
https://doi.org/10.1145/1753326.1753554
http://doi.acm.org/10.1145/1753326.1753554
https://doi.org/10.1145/1978942.1979086
https://doi.org/10.1145/1978942.1979086
http://doi.acm.org/10.1145/1978942.1979086
https://doi.org/10.1145/2642918.2647412
http://doi.acm.org/10.1145/2642918.2647412
http://doi.acm.org/10.1145/2642918.2647412
https://doi.org/10.1145/3173574.3174047
https://doi.org/10.1145/3173574.3174047
http://doi.acm.org/10.1145/3173574.3174047
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_r0--XLyLr6718
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_r0--XLyLr6718
https://books.google.com/books?hl=en&lr=&id=BTxOtt4X920C&oi=fnd&pg=PA443&dq=Cognitive+dimensions+of+notations&ots=OEqg1By_Rj&sig=dpg1zZFRHpBVC_r0--XLyLr6718
https://doi.org/10.18653/v1/P18-1124
https://doi.org/10.18653/v1/P18-1124
https://www.aclweb.org/anthology/P18-1124
https://doi.org/10.1145/1294211.1294254
http://doi.acm.org/10.1145/1294211.1294254
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/3290605.3300334


T. J.-J. Li et al.

53. Huang THK, Azaria A, Bigham JP (2016) InstructableCrowd: creating IF-THEN rules via
conversations with the crowd, pp 1555–1562. ACM Press. https://doi.org/10.1145/2851581.
2892502. http://dl.acm.org/citation.cfm?doid=2851581.2892502

54. Hutchins EL, Hollan JD, Norman DA (1986) Direct manipulation interfaces
55. Iba S, Paredis CJJ, Khosla PK (2005) Interactive multimodal robot programming. Int J Robot

Res 24(1):83–104. https://doi.org/10.1177/0278364904049250
56. IFTTT (2016) IFTTT: connects the apps you love. https://ifttt.com/
57. IntharahT, TurmukhambetovD,BrostowGJ (2019)Hilc: domain-independent pbd systemvia

computer vision and follow-up questions. ACM Trans Interact Intell Syst 9(2-3):16:1–16:27.
https://doi.org/10.1145/3234508. http://doi.acm.org/10.1145/3234508

58. Jain M, Kumar P, Kota R, Patel SN (2018) Evaluating and informing the design of chatbots.
In: Proceedings of the 2018 designing interactive systems conference, pp 895–906. ACM

59. Jiang J, JengW,HeD (2013) How do users respond to voice input errors?: lexical and phonetic
query reformulation in voice search. In: Proceedings of the 36th international ACM SIGIR
conference on research and development in information retrieval, pp 143–152. ACM

60. Kasturi T, Jin H, Pappu A, Lee S, Harrison B, Murthy R, Stent A (2015) The cohort and
speechify libraries for rapid construction of speech enabled applications for android. In:
Proceedings of the 16th annualmeeting of the special interest group on discourse and dialogue,
pp 441–443

61. Kate RJ, Wong YW, Mooney RJ (2005) Learning to transform natural to formal lan-
guages. In: Proceedings of the 20th national conference on artificial intelligence - volume 3,
AAAI’05, pp 1062–1068. AAAI Press, Pittsburgh, Pennsylvania. http://dl.acm.org/citation.
cfm?id=1619499.1619504

62. Kim D, Park S, Ko J, Ko SY, Lee SJ (2019) X-droid: a quick and easy android prototyping
framework with a single-app illusion. In: Proceedings of the 32nd annual ACM symposium
on user interface software and technology, UIST ’19, pp 95–108. ACM, NewYork, NY, USA.
https://doi.org/10.1145/3332165.3347890

63. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y
(eds) 3rd international conference on learning representations, ICLR 2015, San Diego, CA,
USA, May 7–9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1412.6980

64. Kirk J, Mininger A, Laird J (2016) Learning task goals interactively with visual demonstra-
tions. Biol Inspired Cogn Archit 18:1–8

65. Ko AJ, Abraham R, Beckwith L, Blackwell A, Burnett M, Erwig M, Scaffidi C, Lawrance J,
Lieberman H, Myers B, Rosson MB, Rothermel G, Shaw M, Wiedenbeck S (2011) The state
of the art in end-user software engineering. ACM Comput Surv 43(3), 21:1–21:44. https://
doi.org/10.1145/1922649.1922658. http://doi.acm.org/10.1145/1922649.1922658

66. Kumar R, Satyanarayan A, Torres C, Lim M, Ahmad S, Klemmer SR, Talton JO (2013)
Webzeitgeist: design mining the web. In: Proceedings of the SIGCHI conference on human
factors in computing systems, CHI ’13, pp 3083–3092. ACM, New York, NY, USA. https://
doi.org/10.1145/2470654.2466420

67. Kurihara K, Goto M, Ogata J, Igarashi T (2006) Speech pen: predictive handwriting based
on ambient multimodal recognition. In: Proceedings of the SIGCHI conference on human
factors in computing systems, pp 851–860. ACM

68. Labutov I, Srivastava S, Mitchell T (2018) Lia: a natural language programmable personal
assistant. In: Proceedings of the 2018 conference on empirical methods in natural language
processing: system demonstrations, pp 145–150

69. Laird JE, Gluck K, Anderson J, Forbus KD, Jenkins OC, Lebiere C, Salvucci D, Scheutz M,
Thomaz A, Trafton G, Wray RE, Mohan S, Kirk JR (2017) Interactive task learning. IEEE
Intell Syst 32(4):6–21. https://doi.org/10.1109/MIS.2017.3121552

70. Laput GP, Dontcheva M, Wilensky G, Chang W, Agarwala A, Linder J, Adar E (2013) Pixel-
Tone: a multimodal interface for image editing. In: Proceedings of the SIGCHI conference on
human factors in computing systems, CHI ’13, pp 2185–2194. ACM, New York, NY, USA.
https://doi.org/10.1145/2470654.2481301. http://doi.acm.org/10.1145/2470654.2481301

https://doi.org/10.1145/2851581.2892502
https://doi.org/10.1145/2851581.2892502
http://dl.acm.org/citation.cfm?doid=2851581.2892502
https://doi.org/10.1177/0278364904049250
https://ifttt.com/
https://doi.org/10.1145/3234508
http://doi.acm.org/10.1145/3234508
http://dl.acm.org/citation.cfm?id=1619499.1619504
http://dl.acm.org/citation.cfm?id=1619499.1619504
https://doi.org/10.1145/3332165.3347890
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
http://doi.acm.org/10.1145/1922649.1922658
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1109/MIS.2017.3121552
https://doi.org/10.1145/2470654.2481301
http://doi.acm.org/10.1145/2470654.2481301


Demonstration + Natural Language: Multimodal Interfaces …

71. Lau T (2009) Why programming-by-demonstration systems fail: lessons learned for usable
AI. AI Mag 30(4):65–67. http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262

72. Lee C, Kim S, Han D, Yang H, Park YW, Kwon BC, Ko S (2020) Guicomp: a gui design
assistant with real-time, multi-faceted feedback. In: Proceedings of the 2020 CHI conference
on human factors in computing systems, CHI ’20, pp 1–13. ACM, New York, NY, USA.
https://doi.org/10.1145/3313831.3376327

73. Lee HY, Yang W, Jiang L, Le M, Essa I, Gong H, Yang MH (2020) Neural design net-
work: graphic layout generationwith constraints. In: European conference on computer vision
(ECCV)

74. Lee TY, Dugan C, Bederson BB (2017) Towards understanding human mistakes of program-
ming by example: an online user study. In: Proceedings of the 22nd international conference
on intelligent user interfaces, IUI ’17, pp 257–261. ACM, New York, NY, USA. https://doi.
org/10.1145/3025171.3025203. http://doi.acm.org/10.1145/3025171.3025203

75. Leshed G, Haber EM, Matthews T, Lau T (2008) CoScripter: automating & sharing how-to
knowledge in the enterprise. In: Proceedings of the SIGCHI conference on human factors in
computing systems, CHI ’08, pp 1719–1728. ACM, New York, NY, USA. https://doi.org/10.
1145/1357054.1357323. http://doi.acm.org/10.1145/1357054.1357323

76. Li F, Jagadish HV (2014) Constructing an interactive natural language interface for relational
databases. Proc VLDB Endow 8(1):73–84. https://doi.org/10.14778/2735461.2735468

77. Li H,WangYP, Yin J, TanG (2019) Smartshell: automated shell scripts synthesis from natural
language. Int J Softw Eng Knowl Eng 29(02):197–220

78. Li I, Nichols J, Lau T, Drews C, Cypher A (2010) Here’s What I Did: sharing and reusing
web activity with ActionShot. In: Proceedings of the SIGCHI conference on human factors
in computing systems, CHI ’10, pp 723–732. ACM, New York, NY, USA. https://doi.org/10.
1145/1753326.1753432. http://doi.acm.org/10.1145/1753326.1753432

79. Li J, Yang J, Hertzmann A, Zhang J, Xu T (2019) Layoutgan: synthesizing graphic layouts
with vector-wireframe adversarial networks. IEEE Trans Pattern Anal Mach Intell

80. Li TJJ, Azaria A, Myers BA (2017) SUGILITE: creating multimodal smartphone automation
by demonstration. In: Proceedings of the 2017 CHI conference on human factors in comput-
ing systems, CHI ’17, pp 6038–6049. ACM, New York, NY, USA. https://doi.org/10.1145/
3025453.3025483. http://doi.acm.org/10.1145/3025453.3025483

81. Li TJJ, Chen J, Canfield B, Myers BA (2020) Privacy-preserving script sharing in gui-based
programming-by-demonstration systems. Proc ACM Hum-Comput Interact 4(CSCW1).
https://doi.org/10.1145/3392869

82. Li TJJ, Chen J, Xia H, Mitchell TM, Myers BA (2020) Multi-modal repairs of conversational
breakdowns in task-oriented dialogs. In: Proceedings of the 33rd annual ACM symposium on
user interface software and technology, UIST 2020. ACM. https://doi.org/10.1145/3379337.
3415820

83. Li TJJ, Hecht B (2014) WikiBrain: making computer programs smarter with knowledge from
wikipedia

84. Li TJJ, Labutov I, Li XN, Zhang X, Shi W, Mitchell TM, Myers BA (2018) APPINITE:
a multi-modal interface for specifying data descriptions in programming by demonstration
using verbal instructions. In: Proceedings of the 2018 IEEE symposium on visual languages
and human-centric computing (VL/HCC 2018)

85. Li TJJ, Labutov I, Myers BA, Azaria A, Rudnicky AI, Mitchell TM (2018) Teaching agents
when they fail: end user development in goal-oriented conversational agents. In: Studies in
conversational UX design. Springer

86. Li TJJ, Li Y, Chen F, Myers BA (2017) Programming IoT devices by demonstration using
mobile apps. In: Barbosa S, Markopoulos P, Paterno F, Stumpf S, Valtolina S (eds) End-user
development. Springer, Cham, pp 3–17

87. Li TJJ, Popowski L, Mitchell TM, Myers BA (2021) Screen2vec: semantic embedding of gui
screens and gui components. In: Proceedings of the 2021 CHI conference on human factors
in computing systems, CHI ’21. ACM

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
https://doi.org/10.1145/3313831.3376327
https://doi.org/10.1145/3025171.3025203
https://doi.org/10.1145/3025171.3025203
http://doi.acm.org/10.1145/3025171.3025203
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1357054.1357323
http://doi.acm.org/10.1145/1357054.1357323
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.1145/1753326.1753432
https://doi.org/10.1145/1753326.1753432
http://doi.acm.org/10.1145/1753326.1753432
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3025453.3025483
http://doi.acm.org/10.1145/3025453.3025483
https://doi.org/10.1145/3392869
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3379337.3415820


T. J.-J. Li et al.

88. Li TJJ, Radensky M, Jia J, Singarajah K, Mitchell TM, Myers BA (2019) PUMICE: a multi-
modal agent that learns concepts and conditionals from natural language and demonstrations.
In: Proceedings of the 32nd annual ACM symposium on user interface software and technol-
ogy (UIST 2019), UIST 2019. ACM. https://doi.org/10.1145/3332165.3347899

89. Li TJJ, Riva O (2018) KITE: building conversational bots from mobile apps. In: Proceedings
of the 16th ACM international conference on mobile systems, applications, and services
(MobiSys 2018). ACM

90. Li Y, He J, Zhou X, Zhang Y, Baldridge J (2020) Mapping natural language instructions to
mobile UI action sequences. In: Proceedings of the 58th annual meeting of the association for
computational linguistics, pp 8198–8210. ACL, Online. https://doi.org/10.18653/v1/2020.
acl-main.729. https://www.aclweb.org/anthology/2020.acl-main.729

91. Li Y, Li G, He L, Zheng J, Li H, Guan Z (2020) Widget captioning: generating natural
language description for mobile user interface elements. In: Proceedings of the 2020 con-
ference on empirical methods in natural language processing (EMNLP), pp 5495–5510.
ACL, Online. https://doi.org/10.18653/v1/2020.emnlp-main.443. https://www.aclweb.org/
anthology/2020.emnlp-main.443

92. Liang P (2016) Learning executable semantic parsers for natural language understanding.
Commun ACM 59(9):68–76

93. Liang P, Jordan MI, Klein D (2013) Learning dependency-based compositional semantics.
Comput Linguist 39(2):389–446

94. Lieberman H (2001) Your wish is my command: programming by example. Morgan Kauf-
mann

95. Lieberman H, Liu H (2006) Feasibility studies for programming in natural language. In: End
user development, pp 459–473. Springer

96. Lieberman H, Maulsby D (1996) Instructible agents: software that just keeps getting better.
IBM Syst J 35(3.4):539–556. https://doi.org/10.1147/sj.353.0539

97. Lin J, Wong J, Nichols J, Cypher A, Lau TA (2009) End-user programming of mashups with
vegemite. In: Proceedings of the 14th international conference on intelligent user interfaces,
IUI ’09, pp 97–106. ACM, New York, NY, USA. https://doi.org/10.1145/1502650.1502667.
http://doi.acm.org/10.1145/1502650.1502667

98. Liu EZ, Guu K, Pasupat P, Shi T, Liang P (2018) Reinforcement learning on web interfaces
using workflow-guided exploration. CoRR. http://arxiv.org/abs/1802.08802

99. Liu TF, Craft M, Situ J, Yumer E, Mech R, Kumar R (2018) Learning design semantics for
mobile apps. In: Proceedings of the 31st annual ACM symposium on user interface software
and technology, UIST ’18, pp 569–579. ACM, New York, NY, USA. https://doi.org/10.1145/
3242587.3242650

100. LlamaLab: Automate: everyday automation for Android (2016). http://llamalab.com/
automate/

101. Luger E, Sellen A (2016) “like having a really bad pa”: the gulf between user expectation and
experience of conversational agents. In: Proceedings of the 2016 CHI conference on human
factors in computing systems, CHI ’16, pp 5286–5297. ACM, New York, NY, USA. https://
doi.org/10.1145/2858036.2858288. http://doi.acm.org/10.1145/2858036.2858288

102. Maes P (1994) Agents that reduce work and information overload. Commun ACM 37(7):30–
40. https://doi.org/10.1145/176789.176792. http://doi.acm.org/10.1145/176789.176792

103. Mankoff J, Abowd GD, Hudson SE (2000) Oops: a toolkit supporting mediation techniques
for resolving ambiguity in recognition-based interfaces. Comput Graph 24(6):819–834

104. Marin R, Sanz PJ, Nebot P, Wirz R (2005) A multimodal interface to control a robot arm via
the web: a case study on remote programming. IEEE Trans Ind Electron 52(6):1506–1520.
https://doi.org/10.1109/TIE.2005.858733

105. Maués RDA, Barbosa SDJ (2013) Keep doing what i just did: automating smartphones by
demonstration. In: Proceedings of the 15th international conference on human-computer inter-
action with mobile devices and services, MobileHCI ’13, pp 295–303. ACM, New York,
NY, USA. https://doi.org/10.1145/2493190.2493216. http://doi.acm.org/10.1145/2493190.
2493216

https://doi.org/10.1145/3332165.3347899
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://www.aclweb.org/anthology/2020.acl-main.729
https://doi.org/10.18653/v1/2020.emnlp-main.443
https://www.aclweb.org/anthology/2020.emnlp-main.443
https://www.aclweb.org/anthology/2020.emnlp-main.443
https://doi.org/10.1147/sj.353.0539
https://doi.org/10.1145/1502650.1502667
http://doi.acm.org/10.1145/1502650.1502667
http://arxiv.org/abs/1802.08802
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3242587.3242650
http://llamalab.com/automate/
http://llamalab.com/automate/
https://doi.org/10.1145/2858036.2858288
https://doi.org/10.1145/2858036.2858288
http://doi.acm.org/10.1145/2858036.2858288
https://doi.org/10.1145/176789.176792
http://doi.acm.org/10.1145/176789.176792
https://doi.org/10.1109/TIE.2005.858733
https://doi.org/10.1145/2493190.2493216
http://doi.acm.org/10.1145/2493190.2493216
http://doi.acm.org/10.1145/2493190.2493216


Demonstration + Natural Language: Multimodal Interfaces …

106. McDaniel RG, Myers BA (1999) Getting more out of programming-by-demonstration. In:
Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’99,
pp 442–449. ACM, New York, NY, USA. https://doi.org/10.1145/302979.303127. http://doi.
acm.org/10.1145/302979.303127

107. McTear M, O’Neill I, Hanna P, Liu X (2005) Handling errors and determin-
ing confirmation strategies–an object-based approach. Speech Commun 45(3):249–
269. https://doi.org/10.1016/j.specom.2004.11.006. http://www.sciencedirect.com/science/
article/pii/S0167639304001426. Special Issue on Error Handling in Spoken Dialogue Sys-
tems

108. Menon A, Tamuz O, Gulwani S, Lampson B, Kalai A (2013) A machine learning frame-
work for programming by example, pp 187–195. http://machinelearning.wustl.edu/mlpapers/
papers/ICML2013_menon13

109. MihalceaR,LiuH,LiebermanH (2006)NLP (Natural LanguageProcessing) forNLP (Natural
Language Programming). In: Gelbukh A (ed) Computational linguistics and intelligent text
processing. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 319–330

110. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations
in vector space. arXiv:1301.3781 [cs]. http://arxiv.org/abs/1301.3781. ArXiv: 1301.3781

111. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of
words and phrases and their compositionality. In: Advances in neural information process-
ing systems, pp 3111–3119. http://papers.nips.cc/paper/5021-distributed-representations-of-
words-and-phrases-and-their-compositionality

112. Mohan S, Laird JE (2014) Learning goal-oriented hierarchical tasks from situated interactive
instruction. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence,
AAAI’14, pp 387–394. AAAI Press

113. Myers B, Malkin R, Bett M,Waibel A, Bostwick B, Miller RC, Yang J, DeneckeM, Seemann
E, Zhu J et al (2002) Flexi-modal and multi-machine user interfaces. In: Proceedings of the
fourth IEEE international conference on multimodal interfaces, pp 343–348. IEEE

114. Myers BA (1986) Visual programming, programming by example, and program visualization:
a taxonomy. In: Proceedings of the SIGCHI conference on human factors in computing sys-
tems, CHI ’86, pp 59–66. ACM, New York, NY, USA. https://doi.org/10.1145/22627.22349.
http://doi.acm.org/10.1145/22627.22349

115. Myers BA, Ko AJ, Scaffidi C, Oney S, Yoon Y, Chang K, Kery MB, Li TJJ (2017) Mak-
ing end user development more natural. In: New perspectives in end-user development, pp
1–22. Springer, Cham. https://doi.org/10.1007/978-3-319-60291-2_1. https://link.springer.
com/chapter/10.1007/978-3-319-60291-2_1

116. Myers BA, McDaniel R (2001) Sometimes you need a little intelligence, sometimes you need
a lot. Your wish is my command: programming by example. Morgan Kaufmann Publishers,
San Francisco, CA, pp 45–60. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.
8085&rep=rep1&type=pdf

117. Myers C, Furqan A, Nebolsky J, Caro K, Zhu J (2018) Patterns for how users overcome
obstacles in voice user interfaces. In: Proceedings of the 2018 CHI conference on human
factors in computing systems, pp 1–7

118. Norman D (2013) The design of everyday things: revised and expanded edition. Basic Books
119. Oviatt S (1999) Mutual disambiguation of recognition errors in a multimodel architecture. In:

Proceedings of the SIGCHI conference on human factors in computing systems, pp 576–583.
ACM

120. Oviatt S (1999) Ten myths of multimodal interaction. Commun ACM 42(11):74–81 https://
doi.org/10.1145/319382.319398. http://doi.acm.org/10.1145/319382.319398

121. Oviatt S, Cohen P (2000) Perceptual user interfaces: multimodal interfaces that process what
comes naturally. Commun ACM 43(3):45–53

122. Pasupat P, Jiang TS, Liu E, Guu K, Liang P (2018) Mapping natural language commands
to web elements. In: Proceedings of the 2018 conference on empirical methods in natural
language processing, pp 4970–4976. ACL, Brussels, Belgium. https://doi.org/10.18653/v1/
D18-1540. https://www.aclweb.org/anthology/D18-1540

https://doi.org/10.1145/302979.303127
http://doi.acm.org/10.1145/302979.303127
http://doi.acm.org/10.1145/302979.303127
https://doi.org/10.1016/j.specom.2004.11.006
http://www.sciencedirect.com/science/article/pii/S0167639304001426
http://www.sciencedirect.com/science/article/pii/S0167639304001426
http://machinelearning.wustl.edu/mlpapers/papers/ICML2013_menon13
http://machinelearning.wustl.edu/mlpapers/papers/ICML2013_menon13
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://doi.org/10.1145/22627.22349
http://doi.acm.org/10.1145/22627.22349
https://doi.org/10.1007/978-3-319-60291-2_1
https://link.springer.com/chapter/10.1007/978-3-319-60291-2_1
https://link.springer.com/chapter/10.1007/978-3-319-60291-2_1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.8085&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.8085&rep=rep1&type=pdf
https://doi.org/10.1145/319382.319398
https://doi.org/10.1145/319382.319398
http://doi.acm.org/10.1145/319382.319398
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540
https://www.aclweb.org/anthology/D18-1540


T. J.-J. Li et al.

123. Pasupat P, Liang P (2015) Compositional semantic parsing on semi-structured tables. In:
Proceedings of the 53rd annual meeting of the association for computational linguistics and
the 7th international joint conference on natural language processing. http://arxiv.org/abs/
1508.00305. ArXiv: 1508.00305

124. Porcheron M, Fischer JE, Reeves S, Sharples S (2018) Voice interfaces in everyday life. In:
Proceedings of the 2018 CHI conference on human factors in computing systems, CHI ’18.
ACM, New York, NY, USA. https://doi.org/10.1145/3173574.3174214

125. Price D, Rilofff E, Zachary J, Harvey B (2000) NaturalJava: a natural language interface for
programming in java. In: Proceedings of the 5th international conference on intelligent user
interfaces, IUI ’00, pp 207–211. ACM,NewYork, NY, USA. https://doi.org/10.1145/325737.
325845. http://doi.acm.org/10.1145/325737.325845

126. Qi S, Jia B, Huang S, Wei P, Zhu SC (2020) A generalized earley parser for human activity
parsing and prediction. IEEE Trans Pattern Anal Mach Intell

127. Ravindranath L, ThiagarajanA,BalakrishnanH,Madden S (2012)Code in the air: simplifying
sensing and coordination tasks on smartphones. In: Proceedings of the twelfth workshop on
mobile computing systems & applications, HotMobile ’12, pp 4:1–4:6. ACM, New York,
NY, USA. https://doi.org/10.1145/2162081.2162087. http://doi.acm.org/10.1145/2162081.
2162087

128. Reimers N, Gurevych I (2019) Sentence-bert: sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 conference on empirical methods in natural language
processing. ACL. http://arxiv.org/abs/1908.10084

129. Rodrigues A (2015) Breaking barriers with assistive macros. In: Proceedings of the 17th
international ACM SIGACCESS conference on computers & accessibility, ASSETS ’15, pp
351–352. ACM, New York, NY, USA. https://doi.org/10.1145/2700648.2811322. http://doi.
acm.org/10.1145/2700648.2811322

130. Sahami ShiraziA,HenzeN, SchmidtA,GoldbergR, Schmidt B, SchmauderH (2013) Insights
into layout patterns of mobile user interfaces by an automatic analysis of android apps. In:
Proceedings of the 5th ACM SIGCHI symposium on engineering interactive computing sys-
tems, EICS ’13, pp 275–284. ACM, New York, NY, USA. https://doi.org/10.1145/2494603.
2480308. http://doi.acm.org/10.1145/2494603.2480308

131. Sap M, Le Bras R, Allaway E, Bhagavatula C, Lourie N, Rashkin H, Roof B, Smith NA, Choi
Y (2019) Atomic: an atlas of machine commonsense for if-then reasoning. Proc AAAI Conf
Artif Intell 33:3027–3035

132. Sereshkeh AR, Leung G, Perumal K, Phillips C, ZhangM, Fazly A,Mohomed I (2020) Vasta:
a vision and language-assisted smartphone task automation system. In: Proceedings of the
25th international conference on intelligent user interfaces, pp 22–32

133. She L, Chai J (2017) Interactive learning of grounded verb semantics towards human-robot
communication. In: Proceedings of the 55th annual meeting of the association for computa-
tional linguistics (volume 1: long papers), pp 1634–1644. ACL, Vancouver, Canada. https://
doi.org/10.18653/v1/P17-1150. https://www.aclweb.org/anthology/P17-1150

134. ShneidermanB (1983)Directmanipulation: a step beyondprogramming languages.Computer
16(8):57–69. https://doi.org/10.1109/MC.1983.1654471

135. ShneidermanB, Plaisant C, CohenM, Jacobs S, Elmqvist N,DiakopoulosN (2016)Designing
the user interface: strategies for effective human-computer interaction, 6, edition. Pearson,
Boston

136. Srivastava S, Labutov I, Mitchell T (2017) Joint concept learning and semantic parsing from
natural language explanations. In: Proceedings of the 2017 conference on empirical methods
in natural language processing, pp 1527–1536

137. Su Y, Hassan Awadallah A,WangM,White RW (2018) Natural language interfaces with fine-
grained user interaction: a case study on web apis. In: The 41st international ACM SIGIR
conference on research and development in information retrieval, SIGIR ’18, pp 855–864.
ACM, New York, NY, USA. https://doi.org/10.1145/3209978.3210013

138. Suhm B, Myers B, Waibel A (2001) Multimodal error correction for speech user interfaces.
ACM Trans Comput-Hum Interact 8(1):60–98. https://doi.org/10.1145/371127.371166.
http://doi.acm.org/10.1145/371127.371166

http://arxiv.org/abs/1508.00305
http://arxiv.org/abs/1508.00305
http://arxiv.org/abs/1508.00305
https://doi.org/10.1145/3173574.3174214
https://doi.org/10.1145/325737.325845
https://doi.org/10.1145/325737.325845
http://doi.acm.org/10.1145/325737.325845
https://doi.org/10.1145/2162081.2162087
http://doi.acm.org/10.1145/2162081.2162087
http://doi.acm.org/10.1145/2162081.2162087
http://arxiv.org/abs/1908.10084
https://doi.org/10.1145/2700648.2811322
http://doi.acm.org/10.1145/2700648.2811322
http://doi.acm.org/10.1145/2700648.2811322
https://doi.org/10.1145/2494603.2480308
https://doi.org/10.1145/2494603.2480308
http://doi.acm.org/10.1145/2494603.2480308
https://doi.org/10.18653/v1/P17-1150
https://doi.org/10.18653/v1/P17-1150
https://www.aclweb.org/anthology/P17-1150
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/3209978.3210013
https://doi.org/10.1145/371127.371166
http://doi.acm.org/10.1145/371127.371166


Demonstration + Natural Language: Multimodal Interfaces …

139. Swearngin A, DontchevaM, LiW, Brandt J, DixonM, Ko AJ (2018) Rewire: interface design
assistance from examples. In: Proceedings of the 2018 CHI conference on human factors in
computing systems, CHI ’18, pp 1–12. ACM, New York, NY, USA. https://doi.org/10.1145/
3173574.3174078

140. Ur B,McManus E, PakYongHoM, LittmanML (2014) Practical trigger-action programming
in the smart home. In: Proceedings of the SIGCHI conference on human factors in computing
systems, CHI ’14, pp 803–812. ACM,NewYork, NY,USA. https://doi.org/10.1145/2556288.
2557420. http://doi.acm.org/10.1145/2556288.2557420

141. Vadas D, Curran JR (2005) Programming with unrestricted natural language. In: Proceedings
of the Australasian language technology workshop 2005, pp 191–199

142. Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledgebase. Commun
ACM 57(10):78–85. http://dl.acm.org/citation.cfm?id=2629489

143. Xu Q, Erman J, Gerber A, Mao Z, Pang J, Venkataraman S (2011) Identifying diverse usage
behaviors of smartphone apps. In: Proceedings of the 2011 ACM SIGCOMM conference on
internet measurement conference, IMC ’11, pp 329–344. ACM, NewYork, NY, USA. https://
doi.org/10.1145/2068816.2068847. http://doi.acm.org/10.1145/2068816.2068847

144. Yang JJ, Lam MS, Landay JA (2020) Dothishere: multimodal interaction to improve cross-
application tasks on mobile devices. In: Proceedings of the 33rd annual ACM symposium on
user interface software and technology, UIST ’20, pp 35–44. ACM, New York, NY, USA.
https://doi.org/10.1145/3379337.3415841

145. Yao Z, Su Y, Sun H, Yih WT (2019) Model-based interactive semantic parsing: a unified
framework and a text-to-SQL case study. In: Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th international joint conference on natural
language processing (EMNLP-IJCNLP), pp 5447–5458. ACL, Hong Kong, China. https://
doi.org/10.18653/v1/D19-1547. https://www.aclweb.org/anthology/D19-1547

146. Yao Z, Tang Y, Yih WT, Sun H, Su Y (2020) An imitation game for learning semantic
parsers from user interaction. In: Proceedings of the 2020 conference on empirical methods
in natural language processing (EMNLP), pp 6883–6902. ACL, Online. https://doi.org/10.
18653/v1/2020.emnlp-main.559. https://www.aclweb.org/anthology/2020.emnlp-main.559

147. Yeh T, Chang TH,Miller RC (2009) Sikuli: using GUI screenshots for search and automation.
In: Proceedings of the 22nd annual ACM symposium on user interface software and technol-
ogy, UIST ’09, pp 183–192. ACM, New York, NY, USA. https://doi.org/10.1145/1622176.
1622213. http://doi.acm.org/10.1145/1622176.1622213

148. Zhang X, Ross AS, Fogarty J (2018) Robust annotation of mobile application interfaces in
methods for accessibility repair and enhancement. In: Proceedings of the 31st annual ACM
symposium on user interface software and technology, UIST ’18

149. Zhang Z, Zhu Y, Zhu SC (2020) Graph-based hierarchical knowledge representation for robot
task transfer from virtual to physical world. In: 2020 IEEE/RSJ international conference on
intelligent robots and systems (IROS)

150. Zhao S, Ramos J, Tao J, Jiang Z, Li S, Wu Z, Pan G, Dey AK (2016) Discovering different
kinds of smartphone users through their application usage behaviors. In: Proceedings of the
2016 ACM international joint conference on pervasive and ubiquitous computing, UbiComp
’16, pp 498–509. ACM, New York, NY, USA. https://doi.org/10.1145/2971648.2971696.
http://doi.acm.org/10.1145/2971648.2971696

https://doi.org/10.1145/3173574.3174078
https://doi.org/10.1145/3173574.3174078
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2556288.2557420
http://doi.acm.org/10.1145/2556288.2557420
http://dl.acm.org/citation.cfm?id=2629489
https://doi.org/10.1145/2068816.2068847
https://doi.org/10.1145/2068816.2068847
http://doi.acm.org/10.1145/2068816.2068847
https://doi.org/10.1145/3379337.3415841
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547
https://www.aclweb.org/anthology/D19-1547
https://doi.org/10.18653/v1/2020.emnlp-main.559
https://doi.org/10.18653/v1/2020.emnlp-main.559
https://www.aclweb.org/anthology/2020.emnlp-main.559
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213
http://doi.acm.org/10.1145/1622176.1622213
https://doi.org/10.1145/2971648.2971696
http://doi.acm.org/10.1145/2971648.2971696

	 Demonstration + Natural Language: Multimodal Interfaces for GUI-Based Interactive Task Learning Agents
	1 Introduction
	1.1 Interactive Task Learning for Smartphone Intelligent Agents
	1.2 Contributions

	2 The Human-AI Collaboration Perspective
	3 Related Work
	3.1 Programming by Demonstration
	3.2 Natural Language Programming
	3.3 Multi-modal Interfaces
	3.4 Understanding App Interfaces

	4 System Overview
	5 Key Features
	5.1 Using Demonstrations in Natural Language Instructions
	5.2 Spoken Intent Clarification for Demonstrated Actions
	5.3 Task Parameterization Through GUI Grounding
	5.4 Generalizing the Learned Concepts
	5.5 Breakdown Repairs in Task-Oriented Dialogs
	5.6 The Semantic Representation of GUIs

	6 User Evaluations
	7 Limitations
	7.1 Platform
	7.2 Runtime Efficiency
	7.3 Expressiveness
	7.4 Brittleness

	8 Future Work
	8.1 Generalization in Programming by Demonstration
	8.2 Field Study of Sugilite

	9 Conclusion
	References




