
978-1-5386-0443-4/17/$31.00 ©2017 IEEE

End User Mobile Task Automation using Multimodal
Programming by Demonstration

Toby Jia-Jun Li
Human Computer Interaction Institute

Carnegie Mellon University
tobyli@cs.cmu.edu

Abstract—Conversational agents are often used to perform
tasks on smartphones, but existing conversational agents are
limited in capabilities and lack of customizability. My work
explores using the programming-by-demonstration approach to
enable end users to program new tasks for conversational agents
by demonstrating using the familiar graphical user interfaces of
third-party apps. I propose to use a multi-modal (demonstration
and verbal instruction) interface to support generalization,
editing, error handling as well as creating control structures in
creating such smartphone automation.

Keywords—programming by demonstration, end user
development, task automation, SUGILITE

I. BACKGROUND

Smartphone users perform all kinds of tasks on mobile apps
nowadays thanks to the wide range of apps available. Google
Play store alone has more than 3 million apps. However, many
tasks in smartphone apps are repetitive and tedious. A common
daily task like ordering a cup of coffee using the Starbucks app
can require as many as 18 clicks (and way more if you are not
already registered). As a result, users would often like to use
agents to automate these tasks and to perform them on the
users’ behalf. In our survey, 62.7% of the participants were
interested in having a way to automate their repetitive mobile
tasks [1]. Conversational agents can also enable the users to
perform tasks by voice, which is useful in contexts where the
user does not want or cannot touch on the phone.

Existing conversational agents like Apple Siri, Google
Assistant, Amazon Alexa and Microsoft Cortana can perform
various tasks, including device control, communication, web
search and calendar management. However, these agents have
limited functionalities. They can only invoke built-in apps
(e.g., Phone, Calendar, Music, etc.) and a few integrated
external apps and web services (e.g., Search, Weather,
Wikipedia). While many of them provide APIs to enable third-
party apps to integrate, so the apps can be invoked by the
agents, only a small fraction of apps have been integrated, and
only a subset of the most popular tasks in those apps have been
supported due to the development costs and effort required for
the integration. In particular, the “long tail” of apps and tasks
are unlikely to ever get supported under this model.

Another limitation of the existing conversational agents is
the lack of customizability and personalization. The users have
little control over how the tasks are performed besides
providing values for pre-defined parameters. Personalization is

also often limited to preset values, like the home location of the
user and the name of the user.

II. OUR APPROACH AND PROGRESS TO DATE

Currently, we have already designed and implemented a
system named SUGILITE 1 [1]. It uses the programming-by-
demonstration (PBD) approach [2], [3] to enable end users to
extend the capabilities of conversational agents by creating
automation scripts for their tasks. This approach leverages the
resources of millions of available mobile apps and the users’
knowledge about how to operate these apps by letting the users
simply demonstrate the procedures of performing the tasks on
the regular GUI of arbitrary third-party mobile apps. For
example, if a user wishes to teach the agent the task “order a
medium size cup of latte,” she only needs to demonstrate
ordering a medium size cup of latte using the app of her
favorite coffee shop (e.g Starbucks). She can also include her
personal preferences (e.g., any toppings, add-ins, sweetness) in
the demonstration to create a personalized script for the task.

A major advantage of SUGILITE’s approach is its
applicability – since it uses the user interactions with the app
interface for the demonstration, it can automate tasks using any
third-party Android apps, as opposed to other task automation
approaches that rely on the availability of an open API (e.g.
[4]), a special framework or library (e.g. [5]), or the structure
of web pages [6]. We have tested automating a wide range of
tasks with different Android apps using SUGILITE.

Our work also focuses on the generalizability of the
automation. When the user demonstrates a task, the agent
should learn not only to perform the exact same task (as in [7]),
but also to perform similar tasks of different varieties, or with
different parameters. SUGILITE uses a multi-modal approach
where the user provides both demonstration and verbal
commands. With the help of the verbal commands, SUGILITE
can identify parameters and their possible values in the task. In
the previous example of ordering a coffee, after demonstrating
ordering a medium size cup of latte, the user can then use
SUGILITE to run another similar task like: “order a large size
cup of cappuccino” to invoke the same coffee shop app without
having to demonstrate again.

Good usability is another important characteristic of our
approach. The learning barrier of SUGILITE is low for end
users, because they can demonstrate the tasks directly using the

1 A gemstone, and is short for “Smartphone Users Generating
Intelligent Likable Interfaces Through Examples.”

This work was supported in part by Yahoo! InMind project.

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

323

familiar user interfaces of the third-party apps involved, unlike
approaches where the users need to program the automation
using a block programming language (e.g. [8]) or a scripting
language (e.g. [9]). In a lab study, we recruited 19 participants
with various levels of prior programming experience to try to
program SUGILITE to perform four common tasks (requesting
Uber, checking a sports score, ordering a coffee, and sending
an email). Most participants were able to successfully program
scripts for these tasks through SUGILITE regardless of their
prior programming experience. In this study, 85.5% of the
automation scripts created by the participants ran and
performed the tasks successfully. There was no significant
correlation between the participants’ prior programming
experience and the task completion rate or task completion
time. SUGILITE was also found efficient to use in the task
completion time, and easy to use from the participants’
subjective feedback.

We have also extended SUGILITE into the domain of smart
home automation though a follow up system named EPIDOSITE
[10], which supports users to leverage smartphones as hubs for
smart home automation, and to create automation for smart
home devices by demonstrating the desired behaviors using the
smartphone apps for the smart home devices. Using the
EPIDOSITE extension, SUGILITE scripts can also control smart
home devices, read the values and the status of smart home
devices, and be triggered by events from smart home devices,
by smartphone app usage context, or by external web services,
allowing the creation of highly context-aware automations.

III. PROPOSED FUTURE WORK
A focus of the future work for SUGILITE is on further

exploring its multi-modal interaction. In the current SUGILITE
system, the user only gives a verbal command before the
demonstration. Then SUGILITE tries to generalize the script
from the demonstration by using the user’s verbal command as
the intention of the user and trying to identify parameters in the
command. In future work, we want to go further and allow the
users to give verbal instructions in multi-turn conversations
with the agent and to perform demonstrations simultaneously
while speaking.

We propose to support the following four activities through
multi-modal interaction: generalization disambiguation,
conditionals creation, procedure editing, and error handling.
All of these are consider long-standing major challenges in
end-user PBD tools, and we think leveraging the user’s natural
language instructions can be very powerful in supporting them.

The generalization disambiguation solves the data
description problem in PBD [2], [3]. When the user
demonstrates clicking on a UI element on the screen, it is
difficult to determine what feature (e.g., text label, id, screen
location, child elements, etc.) should be used for identifying the
item to click on during future executions of the script. In a pilot
study, we asked the users to give verbal instructions for their
actions while demonstrating. We found that these instructions
are often very helpful in disambiguating the features (e.g., the
users said things like “click on the first item in the list”, “click
on the submit button”, “choose the option with the lowest
price”). We plan to use an interaction proxy [11] to allow the

users to talk about the UI elements on the screen during the
demonstration and specify the features to use for identifying
the element to operate on. The proxy should support the user in
interactively “discussing” and specifying the procedures of the
automation without actually invoking the target app.

This simultaneous demonstration and verbal instruction
inputs should also help with conditionals creation and
procedure editing. The user should be able to simply say
instructions like “choose iced coffee here if it’s hot outside” to
create conditionals, and “order a cup of cappuccino, but choose
delivery instead of pickup” to quickly edit an automation. To
achieve this, we will need to incorporate visualizations that
represent the script structure, and design interaction models
that leverage state-of-art NLP and AI techniques.

Another issue is error handling. Because SUGILITE scripts
rely on the GUI of third-party apps, they may fail if (1) the
app’s GUI has changed due to an update or (2) an app gets into
an unexpected or unknown state. We seek to design new multi-
modal interactions so users can fix the script collaboratively
with the system to add handlers for new situations while
retaining the old script for the original situation if desired.

Beyond the lab study we have already done [1], we also
plan to conduct a longitudinal field study to further understand
how users use SUGILITE in real life contexts. We are
particularly interested in knowing what tasks they choose to
automate, what approach they choose for automating the tasks,
whether different components of SUGILITE can support these
real end user development activities as intended, and how
much benefit SUGILITE can provide in real smartphone usage.

REFERENCES
[1] T. J.-J. Li, A. Azaria, and B. A. Myers, “SUGILITE: Creating

Multimodal Smartphone Automation by Demonstration,” in
Proceedings of CHI '17, 2017, pp. 6038–6049.

[2] A. Cypher and D. C. Halbert, Watch what I do: programming by
demonstration. MIT press, 1993.

[3] H. Lieberman, Your wish is my command: Programming by
example. Morgan Kaufmann, 2001.

[4] R. de A. Maués and S. D. J. Barbosa, “Keep Doing What I Just
Did: Automating Smartphones by Demonstration,” in Proceedings
of MobileHCI '13, 2013, pp. 295–303.

[5] J.-H. Chen and D. S. Weld, “Recovering from Errors During
Programming by Demonstration,” in Proceedings IUI '08, 2008,
pp. 159–168.

[6] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “CoScripter:
Automating & Sharing How-to Knowledge in the Enterprise,” in
Proceedings of CHI '08, New York, NY, 2008, pp. 1719–1728.

[7] A. Rodrigues, “Breaking Barriers with Assistive Macros,” in
Proceedings of ASSET '15, New York, NY, 2015, pp. 351–352.

[8] “Automate ⋅ everyday automation for Android ⋅ LlamaLab.”
[Online]. Available: http://llamalab.com/automate/

[9] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using GUI
Screenshots for Search and Automation,” in Proceedings of UIST
'09, 2009, pp. 183–192.

[10] T. J.-J. Li, Y. Li, F. Chen, and B. A. Myers, “Programming IoT
Devices by Demonstration Using Mobile Apps.,” in Proceedings
of IS-EUD '17, Eindhoven, the Netherlands, 2017.

[11] X. Zhang, A. S. Ross, A. Caspi, J. Fogarty, and J. O. Wobbrock,
“Interaction Proxies for Runtime Repair and Enhancement of
Mobile Application Accessibility,” in Proceedings of CHI '17,
2017, pp. 6024–6037.

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

324

