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ABSTRACT

A major challenge in designing conversational agents is to handle unknown concepts in user utterances.
This is particularly difficult for general-purpose task-oriented agents, as the unknown concepts and
the tasks can be outside of the agent’s existing domain of knowledge. In this work, we propose a
new multi-modal mixed-initiative approach towards this problem. Our agent Pumick guides the user
to recursively explain unknown concepts through conversations, and to ground these concepts by
demonstrating on the graphical user interfaces (GUIs) of existing third-party mobile apps. Pumice
also supports the generalization of learned concepts to other different contexts and task domains.
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Figure 1: A screenshot of the conversa-
tional interface for the current prototype
of the PuMicE agent

INTRODUCTION

General-purpose task-oriented conversational agents such as Apple Siri, Google Assistant and Amazon
Alexa, have become increasingly popular with end users. With the help of available third party “skills”,
they help users complete a wide range of tasks via a conversational interface. However, a major
challenge for such agents is to handle out-of-domain or unknown concepts in user utterances [6].
These agents often have a set of knowledge (also known as the ontology) that contains concepts and
procedures that they can understand and process. When they encounter an unknown concept or
procedure, most existing agents perform a fallback action, such as a web search on the user utterance,
or a semi-helpful action if the utterance is partially understood (e.g., Siri shows a list of nearby
Starbucks stores on Apple Maps when asked to order a cup of coffee from Starbucks). These fallback
strategies are not ideal, because they do not fulfill the user’s original need, and do not enable the
agent to learn the unknown concepts and procedures for future use.

A better approach is to have the agent learn unknown concepts and procedures from end users [6].
We have already made progress in developing agents that learn new procedures from user demonstra-
tions and app usage traces (e.g., [4, 5, 7, 8]) and new concepts within constrained domains from user
verbal explanations (e.g, [1, 3, 15]). However, these approaches are limited.

For example, our previous SUGILITE [4] multi-modal agent can learn new procedures (e.g., order
a cup of coffee from Starbucks) from users’ demonstrations of tasks using third-party mobile apps,
and generalize the procedures through parameterization (e.g., learn how to order different kinds of
beverages available in the Starbucks app from a demonstration of ordering Cappuccino) based on
users’ verbal descriptions of tasks. However, SUGILITE can not learn declarative concepts involved in
the control structures of tasks (e.g., the concept of hot in “if it is hot, order iced coffee”), nor can it
generalize learned concepts to other task domains. SucILITE also requires users to completely and
accurately describe tasks in natural language before demonstrating for parameterization to work,
which is not natural for end users according to our formative study (more details later).

The learning from instruction approach (also known as natural language programming [10, 11]
in some research communities) used in LiA [1, 3] enables users to define declarative concepts and
control structures (e.g., important email in “if an email is important, forward it to my assistant.”) by
verbal instructions (e.g., important emails are those from my supervisor or which contain the word
“important” in the subject). However, this approach is limited to domains where the agent has prior
knowledge in, since the agent needs to understand concepts used in the user’s instructions (e.g.,
sender and subject of emails in the prior example). Thus this approach is not suitable for completely
out-of-domain tasks where the agent has little prior knowledge, or for learning the “long-tail” of
highly personalized concepts that are hard for users to explain using what the agent already knows.



TPUMICE is a type of volcanic rock. It is also an
acronym for Programming in a User-friendly
Multimodal Interface through Conversations
and Examples

In this position paper, we describe our ongoing work of designing and implementing a new con-
versational agent named Pumice' to address limitations of the above approaches. In PUMICE, users
first describe the desired tasks and control structures naturally in natural language from a high level,
and then collaborate with the agent through conversations to explain and define any ambiguities,
unknown concepts and new procedures in the initial descriptions in a top-down fashion. In this
process, users can explain concepts by referring to either previously defined concepts, or contents
from GUIs of third-party mobile apps, facilitating better reusability of existing knowledge. Users can
also define new procedures through demonstrating with third-party apps.

FORMATIVE STUDY

We took a user-centered approach [12] for designing a natural end-user development system [13],
where we first studied how end users naturally instruct tasks with declarative concepts and control
structures in natural language for various tasks in the mobile app context through a formative study
on Amazon Mechanical Turk with 58 participants (41 of which are non-programmers; 38 men, 19
women, 1 non-binary person).

Each participant was presented with a graphical description of an everyday task for a conversational
agent to complete in the context of mobile apps. All tasks had distinct conditions so that each task
should be performed differently under different conditions, such as playing different genres of music
based on the time of the day. Each participant was assigned to one of 9 tasks. To avoid biasing
the language used in the responses, we used the Natural Programming Elicitation method [12] by
showing graphical representations with limited text in the prompts. Participants were asked how they
would verbally instruct the agent to do the tasks, so that it may understand the difference among the
conditions and what to do in each condition. Each participant was also shown an example scenario
and the corresponding example verbal instructions.

Participants were randomly assigned into 2 groups. For the experimental group, participants
instructed tasks while looking at relevant mobile app GUIs. Each participant was presented with a
mobile app screenshot with arrows pointing to the screen component containing information pertinent
to the task condition. Participants in the control group were not shown app GUIs.

The participants’ responses were analyzed using open coding [16]. 44 out of 174 responses (19%)
were excluded from the analysis for quality control due to the lack of efforts in the responses, question
misunderstandings or blank responses.

We report the most relevant findings for motivating the design of Pumice below:

App GUI Grounding Reduces Ambiguous and Fuzzy Concepts. We analyzed whether each user’s
verbal instructions of the task provides a clear definition of the conditions in the task, and the logic
for choosing different conditions. In the control group (instructing without seeing app screenshots),
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Table 1: The conversation transcript for
the example scenario. “A” indicates the
agent; “U” indicates the user.

c

U: Ifit is hot, order a cup of Iced Cappuccino.
A:
U: It’s hot when the temperature is above 90 degrees

How do | know whether it is hot?

Fahrenheit.
How do | find out the temperature?

: Let me show you.

Please show me how to find out the temperature using
mobile apps.

(User demonstrates in the AccuWeather app...)

| have learned how to find out the temperature using
AccuWeather.

| have learned how to tell whether it is hot using the
temperature.

: How do | order a cup of Iced Cappuccino?
: Let me show you.
: Please show me how to order a cup of Iced Cappuccino

using mobile apps.
(User demonstrates in the Starbucks app...)

: | have learned how to order a cup of something using

Starbucks.

: I have learned if it’s hot, order a cup of Iced Cappuccino

using Starbucks. What should I do if it is not hot?

: Order a cup of Hot Latte.
: OK. I have learned to order a cup of Hot Latte if it is

not hot.

33% of the participants used ambiguous or fuzzy concepts in the instructions, such as “If it is daytime,
play upbeat music..” although the example they saw had clearly defined conditions.

Interestingly, for the experimental group, where each participant was provided an app screenshot
displaying specific information relevant to the task’s condition, significantly fewer (p < 0.05) partici-
pants (9%) used ambiguous or fuzzy concepts, while the rest clearly defined the condition (e.g., before
7 am). The results suggest that end users naturally use ambiguous and fuzzy concepts when verbally
instructing task logic. Showing users relevant mobile app GUIs with concrete instances of the values
can help them ground the concepts, leading to less ambiguities and fuzziness in their descriptions.
The implication is that a potentially effective approach to avoiding ambiguous or fuzzy utterances for
agents is to guide users to explain them in the context of app GUIs.

Assumption of Common Sense Knowledge Understanding. We observed that the participants often
assumed the understanding of common sense knowledge for the agent when instructing tasks. For
example, one participant said, “if the day is a weekend”. The agent would therefore need to understand
the concept of “weekend” (i.e., how to know the day of the week for today, and what days count as
“weekend”) to resolve this condition.

However, the coverage in the understanding of common sense knowledge is not only lacking, but
also impractical in current agents, especially when across diverse domains due to the spotty coverage
and unreliable inference of existing common sense knowledge systems. Managing user expectation
and communicating the agent’s capability is also a long-standing challenge in interactive intelligent
systems [9]. A feasible workaround is to enable the agent to ask users to explain new concepts when
they come up, and to build up knowledge of concepts over time through its interaction with users.

PUMICE

Motivated by the formative study results, we designed an early prototype of the Pumice agent for
Android phones (Figure 1). It can handle natural language instructions with unknown or fuzzy concepts
by allowing users to recursively define these concepts in a top-down process. Through Pumick, end
users can start by describing the task and its logic at a high level in a natural style according to the
formative study results. A conversational agent would guide the users to further articulate about
concepts that require more clarifications or explanations through conversations using a combination
of verbal definitions, references to previously defined concepts, and references to existing external
app GUIs. This process allows the agent to learn reusable and domain-transferable concepts and
procedures in a wide range of task domains without having any prior knowledge in the domain.
We are still in the early process of evaluating the effectiveness, user perception and usability
of Pumice through empirical user studies. However, our own initial experiences with the Pumice
prototype in different task scenarios suggest that Pumice’s approach is promising in helping end users
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0 - U: If it is hot, order a cup of Iced Cappuccino

(IF (resolveBoolExp(“it is hot”)) (resolveAction(*order a cup of Iced Cappuccino®)))

6 - U: I can demonstrate.

1- A: How do | know 2 - U: It is hot when the temperature 5 - A: How do [ order a cup (User demonstrates in the

whether it is hot? is above 90 degrees Fahrenheit. of Iced Cappuccino?

Starbucks app)
(> (resolveValue(“temperature”)) (number 90 Fahrenheit)) order_starbucks(“Iced Cappuccino”)
3 - A: How do I find out 4 - U: Let me show you.
the temperature? (User demonstrates in the weather app)

7 - A: What should I do
if it’s not hot?

Hot Latte
getTemperature() (ELSE (order_starbucks(“Hot Latte”)))

Result:
(IF (> getTemperature() (number 90 Fahrenheit))

(order (“Iced Cappuccino”))

New concepts learned and added to the
“ »
(order ( Hot Latte ) ) ) D Persistent Knowledge Graph

D Unknown concepts or procedures that
need further clarification or definition

Figure 2: Example structure of how Pumice learns the concepts and procedures in the command “If it’s
hot, order a cup of Iced Cappuccino”” In this process, the agent learns getting the current temperature,
ordering a drink (any kind) from Starbucks, and the generalized concept of “hot” as “the temperature
is above a certain value”.

teach conversational agents unknown or fuzzy concepts and procedures in various task domains. Our
past evaluations with conceptually related systems [4, 5] also suggested that Pumicke’s high-level
multi-modal approach (verbal instructions + demonstrations on existing apps) should be usable for
end users without much programming expertise.

Example Scenario

Figure 2 shows an example structure of how PuMick learns the concepts and procedures in the
command “If it’s hot, order a cup of Iced Cappuccino” with zero prior knowledge about weathers
or coffee. Table 1 shows the corresponding conversation script. At first (Utterance 0 in Figure 2), the
agent can only recognize the conditional structure in the user input, due to the lack of knowledge in
relevant domains. However, based on the conditional structure, it recognizes that “it’s hot” should
represent a Boolean expression, while “order a cup of Iced Cappuccino” should be an action.

5
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Pumice recursively resolves these unknown procedures and concepts through conversations, as
shown in Utterance 1in Figure 2. In this case the user provides a definition of “it’s hot”, which is parsed
into a comparison expression. However, Pumice still does not know the concept of “temperature” nor
does it know how to obtain its value. It only knows that “temperature” should be a value that is
comparable to “90 Fahrenheit”. Thus is asks the user how to find out the temperature.

Here the user can choose to demonstrate how to find out the temperature using an app on the
phone that has the temperature displayed in the GUI, as shown in Figure 3. From the demonstration,
PuMick records the procedure to go to where the temperature is displayed and fetch the value, and
saves it as a reusable query getTemperature() that can be used for querying the temperature in
other scripts. At the end, the concepts of “it’s hot” and “temperature” are stored in the persistent
knowledge base of PuMick.

For the next step, PuMice similarly resolves the action “order a cup of Iced Cappuccino” by having
the user demonstrate performing the task. Through its underlying SuciLiTe framework for handling
demonstrations, PUMICE recognizes “Iced Cappuccino” as a parameter in the task, and learns how
to order all other available kinds of beverages in the Starbucks app by analyzing the GUI struc-
ture of the app. This procedural knowledge is stored persistently as a parameterized procedure
order_starbucks(drinkName). Finally, Pumice proactively asks the user if it should do anything
when the condition “it’s hot” is not true, because our formative study suggested that end users would
often omit else statements in commands with conditional structures. To respond, the user can either
demonstrate what to do in the else condition, or verbally instruct what to do using concepts and
procedures that Pumice has already learned (as shown in the example).

DISCUSSION

A main takeaway of this position paper should be our new approach for handling unknown concepts
in conversational agents — PuMICE guides users to use a combination of verbal instructions and
demonstrations to “teach” the concepts, and generalizes them so they can be used in other contexts.
In particular, Pumice’s approach provides interesting implications in utilizing pointing and direct
manipulation modalities to complement verbal inputs in the design of conversational agents.

Multi-modal Interaction in Concept Learning for Conversational Agents

While conversational/speech interfaces have many advantages compared to conventional graphical
interfaces, such as naturalness, low learning barrier, and support for various ubiquitous computing
contexts, they also have limitations that make them ineffective in some scenarios. As a result, speech
interfaces have been used in conjunction with other input modalities for a long time, dating back to
early pioneer systems like Put-that-there [2] to overcome the limitations.
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For example, in our case, supporting out-of-domain concept learning solely from verbal instructions
would be very difficult. When a user is asked to explain a concept or a procedure to an agent, the
prior knowledge, the internal state and the natural language understanding capability of the agent
are invisible to the user. As a result, the user may overestimate the agent (e.g., expect understanding
of common sense knowledge, use complex or fuzzy logic, or refer to information that the agent has no
access to), or find it challenging to explain concepts using the limited prior knowledge of the agent.

We found that GUIs of existing apps are a good medium through which users can ground their
instructions. Existing GUIs cover a wide range of task domains for general-purpose task-oriented
agents. On the one hand, users are familiar with them, so they are likely able to find appropriate
GUI references for concept instructions. In many cases, it is easier for an user to point to something
than only verbally explaining. On the other hand, GUIs also provide rich structural and semantic
information about the task, which helps the agent understand task contexts and generalize learned
knowledge. The other way around, conversational contexts also help enhance the understanding of
GUI demonstrations through the pattern of mutual disambiguation [14], as shown in our prior work [5].
For PuMick, our design goal is to support seamless coordination between the two modalities, so that
users can choose the most natural and the most effective modality for different parts of tasks.

Unlike other popular approaches for supporting multi-modality in conversational agents, like the
use of in-dialog cards, our usage of external app GUI demonstration would bring user attention away
from the conversational context. So a core challenge would be to provide appropriate guidance to
users during demonstrations, so that they can provide more useful inputs. We are currently exploring
design opportunities in this area, such as the use of new dialog strategies and visual aids.

FUTURE WORK

Besides plans on addressing challenges in multi-modal interaction, as covered in the Discussion
section, we will conduct various kinds of in-lab and in-situ evaluations to measure the effectiveness,
user perception and usability of Pumice’s approach. We plan to further extend Pumice’s mechanism
for generalizing learned knowledge, to raise the ceiling of supported instruction expressiveness so
that Pumice can learn about tasks with more complex logic and structures, and to explore issues in
the cross-user sharing of learned knowledge. We are also interested in leveraging existing sources of
world knowledge (e.g., ConceptNet and Wikidata) to assist users in their instructions of new concepts
and new procedures.
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