Programming IoT Devices by Demonstration
Using Mobile Apps

Toby Jia-Jun Lil(g), Yuanchun Liz, Fanglin Chenl, and Brad A. Myersl(X)

! Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA
{tobyli,bam}@cs.cmu.edu, fanglin@cmu.edu
2 School of Electronics Engineering and Computer Science, Peking University, Beijing, China
yuanchun.li@pku.edu.cn

Abstract. The revolutionary advances of Internet of Things (IoT) devices and
applications have helped IoT emerge as an increasingly important domain for
end-user development (EUD). Past research has shown that end users desire to
create various customized automations, which would often utilize multiple IoT
devices. Many solutions exist to support EUD across multiple IoT devices, but
they are limited to devices from the same manufacturer, within the same “eco-
system” or supporting a common API. We present EPIDOSITE, a mobile program-
ming-by-demonstration system that addresses this limitation by leveraging the
smartphone as a hub for IoT automation. It enables the creation of automations
for most consumer [oT devices on smartphones by demonstrating the desired
behaviors through directly manipulating the corresponding smartphone app for
each [oT device. EpIDOSITE also supports using the smartphone app usage context
and external web services as triggers and data for automations, enabling the crea-
tion of highly context-aware IoT applications.

Keywords: Internet of Things - Programming by demonstration - End user
development

1 Introduction

In the recent years, the rapid growth of Internet of Things (IoT) has surrounded users
with various smart appliances, sensors and devices. Through their connections, these
smart objects can understand and react to their environment, enabling novel computing
applications [39]. A past study has shown that users have highly diverse and personalized
desired behaviors for their smart home automation, and, as a result, they need end-user
tools to enable them to program their environment [42]. Especially with the growing
number of devices, the complexity of the systems, and their importance in everyday life,
it is increasingly important to enable end users to create the programs themselves for
those devices to achieve the desired user experience [33, 40].

Many manufacturers of smart devices have provided their customers with tools for
creating their own automations. For example, LG has the SmartThinQ! app, where the

! https://us.smartthing.com/.

© Springer International Publishing AG 2017
S. Barbosa et al. (Eds.): IS-EUD 2017, LNCS 10303, pp. 3-17, 2017.
DOI: 10.1007/978-3-319-58735-6_1

https://us.smartthinq.com/

4 TJ.-J. Lietal.

user can author schedules and rules for their supported LG smart appliances such as
fridges, washers and ovens. Similar software is also provided by companies like
Samsung (SmartThings), Home Depot (Wink) and WeMo. However, a major limitation
for all of these is the lack of interoperability and compatibility with devices from other
manufacturers. They all only support the limited set of devices manufactured by their
own companies or their partners. Therefore, users are restricted to creating automations
using devices within the same “ecosystem” and are unable to, for instance, create an
automation to adjust the setting of an LG air conditioner based on the reading from a
Samsung sensor.

Some platforms partially address this problem. For example, IFTTT (ifttt.com) is a
popular service that enables end users to program in the form of “if frigger, then
action” for hundreds of popular web services, apps, and IoT devices. With the help of
IFTTT, the user can create automations across supported devices like a GE dishwasher,
a WeMo coffeemaker and a Fitbit fitness tracker. However, the applicability of IFTTT
is still limited to devices and services offered by its partners, or those that provide open
APIs which can connect to IFTTT. Even for the supported devices and services, often
only a subset of the most commonly used functions is made available due to the required
engineering effort. Other platforms like Apple HomeKit and Google Home also suffer
from the same limitations. Because of the lack of a standard interface or a standard
protocol, many existing tools and systems cannot support the heterogeneity of IoT
devices [17, 21]. While generalized architectures for programming IoT devices and
higher-level representations of IoT automation rules and scripts have been proposed
(e.g., [15, 16, 20, 21, 37]), they have not yet been widely adopted in the most popular
commercial IoT products, and there is some reason for pessimism that such an agreement
will ever happen.

To solve these problems, we create a new system named EpiposITE,2 which is an
end-user development (EUD) tool that enables the creation of automations for IoT
devices from different ecosystems by demonstration though manipulating their corre-
sponding mobile apps. Our system particularly targets the development of automa-
tion scripts for consumer IoT devices in the smart home environment by end users
with little or no programming expertise. Thanks to the ubiquity of smartphones, for
the majority of consumer IoT devices, there are corresponding smartphone apps
available for remote controlling them, and these apps often have access to the full
capabilities of the devices. A smartphone loaded with these apps is an ideal universal
interface for monitoring and controlling the smart home environment [46]. Thus, by
leveraging the smartphone as a hub, we can both read the status of the IoT sensors
by scraping information from the user interfaces of their apps, and control the IoT
actuators by manipulating their apps. To our knowledge, ours is the first EUD system
for IoT devices using this approach.

* EPIDOSITE is a type of rock. Here, the name stands for “Enabling Programming of IoT
Devices On Smartphone Interfaces for The End-users”.

https://ifttt.com/

Programming IoT Devices by Demonstration Using Mobile Apps 5

1.1 Advantages

Our approach has the following three major advantages:

Compatibility: Unlike other EUD tools for consumer IoT devices, which can only
support programming devices from the same company, within the same ecosystem, or
which provide open access to their APIs, EPIDOSITE can support programming for most
of the available consumer IoT devices if they provide Android apps for remote control.
For selected phones with IR blasters (e.g., LG G5, Samsung Galaxy S6, HTC One) and
the corresponding IR remote apps, EPIDOSITE can even control “non-smart” appliances
such as TVs, DVRs, home theaters and air conditioners that support IR remote control
(but this obviously only works when the phone is aimed at the device).

Interoperability: EPIDOSITE can support creating automation across multiple 10T
devices, even if they are from different manufacturers. Besides [oT devices, EPIDOSITE
can also support the incorporation of arbitrary third-party mobile apps and hundreds of
external web services into the scripts. The exchange of information between devices is
also supported by demonstration. The user can extract values of the readings and status
of IoT devices using gestures on one mobile app, and use the values later as input for
other apps. This approach addresses the challenge of supporting impromptu interoper-
ability [14], a vision that devices acquired at different times, from different vendors and
created under different design constraints and considerations should interconnect with
no advance planning or implementation.

Usability: We believe that EposiTE should be easy to use, even for end users with
little or no prior programming experience. Since the users are already familiar with how
to use the mobile apps to monitor and to control IoT devices, EPIDOSITE minimizes the
learning barrier by enabling users to use those familiar app interfaces to develop auto-
mations by demonstrating the procedures to control the IoT devices to perform the
desired behaviors. A major advantage of PBD is that it can empower users while mini-
mizing learning of programming concepts [30, 35]. The evaluation of the SuGILITE
system [29], which shares the same demonstrational interface as EPIDOSITE, also suggests
that most end users can successfully automate their tasks by demonstration using mobile
apps on smartphones.

2 Related Work

Supporting end user development activities in the Internet of Things era has been iden-
tified as a particularly important and promising research direction [3]. Due to the
dynamic nature of context, it is difficult or even impossible for a developer or a designer
to enumerate all of the possible contextual states and the appropriate action to take from
each state [19]. To solve this problem, the end users should play a central role in deciding
how elements in the IoT ecosystem should interact with people and with other devices,
and the end-users should be empowered to program the system behavior [3, 44]. The
longitudinal study by Coutaz and Crowley [7] reported that families liked EUD for IoT

6 TJ.-J. Lietal.

devices in the smart home environment because it provides convenience and personal-
ization. Much prior work has focused on enabling end users to configure, extend and
customize the behaviors of their IoT devices with various approaches. However, we
believe EpIDOSITE is the first to enable the users to create automations for IoT devices by
demonstration using the devices’ corresponding mobile apps.

In the specific area of EUD for developing home automation scripts across IoT
devices, rule-based systems like HomeRules [10], IFTTT (ifttt.com) and Altooma
(www.atooma.com) use a trigger-action model to allow users to create automation rules
for supported web services and IoT devices. Compared with EPIDOSITE, those services
can only support much a smaller set of devices. Smart home solution providers like
Samsung, LG and Apple also provide software kits for end user development with their
products, but unlike EpIDOSITE, they can only support devices within their own “ecosys-
tems”. Some generalized architectures and standardized models for programming IoT
devices and higher-level representations of IoT automation rules and scripts have been
proposed (e.g., [15, 16, 20, 21, 37]), but none have been widely adopted. In a field study
for home automation systems [11], interoperability was shown to be important for the
users. The same study showed that, although expert users reported that they facilitated
communication between devices and services utilizing HTTP requests, this set-up would
be difficult to configure for end users with limited technical background [11].

Visual programming tools such as Midgar [17], Jigsaw [22], Puzzle [9], Yahoo Pipes
(http://pipes.yahoo.com/pipes) and Bipio (https://bip.io) enable the users to create
programs, data pipelines and mashup applications between supported devices, services
and APIs. AppsGate [7] provides a syntax-driven editor that empowers the users to
program their smart home devices using a pseudo-natural language. Kubitza and
Schmidt [25] proposed a web-based IDE that allows users to mash-up heterogeneous
sets of devices using a common scripting language. However, the above approaches
require the user to work with a visual programming language interface, a scripting
language, or a domain-specific programming language (DSL), which is challenging for
non-expert end users with little or no programming knowledge.

Some prior PBD systems such as motionEAP (www.motioneap.de) [40], Backpacks
[38] and prior work in robot programming by demonstration (e.g., [1, 4]) enable users
to program their desired behaviors by directly manipulating the physical objects (e.g.,
grabbing tools on an assembly line, or manipulating the arms of arobot). The a CAPpella
system [12] empowers the user to specify a contextual situation by demonstration using
data from multiple sensors in a smart environment. A major advantage of PBD is that
itis easy to learn for end users with limited programming knowledge, as it allows users
to program in the same environment in which they perform the actions [8, 30, 36].
However, these systems require the presence of extensive sensors on the devices and
objects being programmed, or in the environment, which is costly and unavailable for
most existing smart home devices and environments. As a comparison, EPIDOSITE shares
these systems’ advantages in usability and low learning barrier, but can work with most
current IoT devices with available remote control Android apps without requiring extra
Sensors.

There are also PBD systems focusing on automating tasks on other domains, such
as file management [34], photo manipulation [18] and web-based tasks [27]. The most

https://ifttt.com/
http://www.atooma.com
http://pipes.yahoo.com/pipes
https://bip.io
http://www.motioneap.de

Programming IoT Devices by Demonstration Using Mobile Apps 7

relevant prior system to this work is SUGILITE [29], which is a PBD system for automating
tasks on smartphones. Our EPIDOSITE system leverages the PBD engine from SUGILITE,
extending its capabilities to support programming for IoT devices and provides new
features specifically for smart home automation.

3 Example Usage Scenario

In this section, we use an example scenario to illustrate the procedure of creating an
EpposSITE automation. For the scenario, we will create a script that turns on the TV set
top box and turns off the light when someone enters the TV room. We will use a Verizon
TV set-top box, a Philips Hue Go light and a D-Link DCH-S150 Wi-Fi motion sensor
in this script. To our best knowledge, there exists no other EUD solution that can support
all the above three devices.

First, the user starts EpiposITE (Fig. 1a), creates a new script and gives it a name. The
phone then switches back to the home screen, and prompts the user to start demon-
strating. The user now starts demonstrating how to turn off the light using the Philips
Hue app — tapping on the Philips Hue icon on the home screen, choosing “Living Room”,
clicking on the “SCENES” tab, and selecting “OFF”, which are the exactly same steps
as when the user turns off the light manually using the same app. After each action, the
user can see a confirmation dialog from EpmosITE (Fig. 1b). Running in the background
as an Android accessibility service, the EpiposiTE PBD engine can automatically detect
the user’s action and determine the features to use to identify the element using a set of
heuristics (see [29] for more details), but the user can also manually edit the details of
each recorded action in an editing panel (Fig. lc). Figure 2a shows the textual

3 © ¥4 L1610

3O 94 L2024 3 © .4 42046

EPIDOSITE Recording Panel

[UTE'S -

EPIDOSITE

SCRIPT LIST TRIGGER LIST

Target Type
droid.widget.Fr L it -

Turn on Living Room Lights android.widget FrameLayou

Identifying Features

) ViewD: com diink mydlinkmyhome:id/
imglconStatus

Turn on TV Set-top Box

Set as a parameter

Adjust NEST temperature
Text: Lab Motion Sensor

Order a Cappuccino

Get the Current Temperature

Turn off the Smart Plug for Coffee Machine

(a)

Fig. 1. Screenshots of EpiposITE: (a) the main screen of EpiposiTE showing a list of available

Save Operation Confirmation

Are you sure you want to record the
operation: on the ActionBar$Tab
object "LIGHTS" in Hue

EDIT CANCEL YES

Set as a parameter
] ViewlD: com.dlink.mydlinkmyhome:id/txt_title
Set as a parameter

[Location in Parent: 0 0 1080 253

[J Location in Screen: 0 216 1080 469

Within App
mydlink Home %

90 total alternative nodes, 1 matched
Preview
on the FrameLayout object "Lab
Motion Sensor" in mydlink Home

oK CANCEL RECORDING OFF

(C}

scripts; (b) the confirmation dialog for an operation; (c) the editing panel for one operation.

8 TJ.-J. Lietal.

representation of the EpPIDOSITE script created for turning off the light. Next, the user
demonstrates turning on the TV set-top box using the SURE Universal Remote app on
the phone (or other IR remote apps that support the Verizon TV set-top box), and
EppOsITE records the procedure for that as well.

3 © 9401543

3 P4 L6717 3Q© P4 01543

View Script: Turn off the living room I...

START SCRIPT y %
on "Hue" in Pixel = . ?
Launcher Add Trigger
at the screen Trigger Name: Add Trigger
location (0 336 1080 656) in Hue y -
¢) Motion Sensor Triggering TV Set-top Box Trigger Name:
on "SCENES" in Hue
Therater mode
on "OFF" in Hue

Choose trigger type:

on that has
Notification Content
the Object ID "com.philips.lighting.hue2:id/ otification Gonten

list_item_normal’ in Hue

Choose trigger type
App Launch

Choose source app:

END SCRIPT mydlink Home Choose app

Trigger for any notification contains: YouTube

Motion detected by TV Room)|

Choose a script to trigge

Choose a script to trigger: Turn off the living room light
Turn on TV Set-top Box
CANCEL

CANCEL 0K

RUN BACK

(a)

Fig. 2. Screenshots of EpposITE’s script view and trigger creation interfaces: (a) the script view
showing the script from the example usage scenario; (b) the window for creating an app
notification trigger; (c) the window for creating an app launch trigger.

The user ends the demonstration recording and goes back to the EpiposITE app. She
then clicks on the menu, and chooses “Add a Script Trigger”. In the pop-up window
(Fig. 2b), she gives the trigger a name, selects ‘“Notification” as the type of the trigger,
specifies “mydlink Home” (the mobile app for the D-Link motion sensor) as the source
app, chooses the script she just created as the script to trigger, enters “Motion detected
by TV room” as the activation string, and finally, clicks on “OK” to save the trigger.
This trigger will execute the script every time that the “mydlink Home” app sends a
notification that contains the string “Motion detected by TV room”.

The steps shown above are the whole process to create this automation. Once the
trigger is enabled, the background Android accessibility service waits for the activation
of the trigger. When the motion sensor detects a motion, an Android notification is
generated and displayed by the mydlink Home app. Then EpiposITE intercepts this noti-
fication, activates the trigger, executes the script, and manipulates the UI of the Philips
Hue app and the SURE Universal Remote app to turn off the lights and to turn on the
TV set-top box.

Programming IoT Devices by Demonstration Using Mobile Apps 9

4 System Design and Implementation

4.1 Implementation

The client component of EPIDOSITE is an Android application written in Java. It does not
require root access to the Android system, and should work on any smartphone with
Android 4.4 or above. The client component is standalone. There is also an optional add-
on server application available for supporting automation triggered by external web
services through IFTTT. The server application is implemented in Java with Jersey? and
Grizzly*.

The mobile programming by demonstration engine used in EppoSITE extends the
prior mobile PBD system SuGILITE [29]. SuGILITE uses Android’s accessibility API to
support automating tasks in Android apps. During the demonstration, all of the user’s
interactions with the phone, together with the relevant Ul elements on the screen, are
recorded by a background recording handler through the accessibility API. SuGILITE then
processes the recording and generates a reusable script for performing the task. SUGILITE
also generalizes the script from the demonstrated example by analyzing the user interface
structures of the apps used in the demonstration. For instance, if the user demonstrates
how to turn on the living room light using the Philips Hue app, SuciLiTe will detect
“living room” as a parameter of this script, and automatically generalizes the script so
it can be used to turn on other available Philips Hue lights by providing a different string
when the script is invoked. With SuGILITE, the user can record an automation by demon-
strating the procedure of performing the task using the user interfaces of any third-party
Android app (with some exceptions noted in [29]), and then run the automation through
amulti-modal interface, invoked through the GUI or using speech. SUGILITE also supports
the viewing and editing of the scripts. Details about SUGILITE can be found in the earlier
paper [29].

On top of SucILITE, EpbosITE adds new features and mechanisms to support the
programming of IoT devices in the smart home setting, including new ways for trig-
gering scripts, new ways for scripts to trigger external services and devices, and new
mechanisms for sharing information among devices. To better meet the needs of devel-
oping for IoT devices, EpIDOSITE also supports programming for different devices in
separated subscripts, and reusing the subscripts in new scripts. For example, the user
can demonstrate the two scripts for “turning off the light” and “turning on the TV”, and
then create a new script of “if ..., turn off the light and turn on the TV”’) without having
to demonstrate the procedures for performing the two tasks again.

4.2 Key Features

Notification and App Launch Triggers
The most common context-aware applications in the smart home are naturally described
using rule-based conditions in the model of trigger-action programming, where a trigger

} https://jersey.java.net/.
¢ https://grizzly .java.net/.

https://jersey.java.net/
https://grizzly.java.net/

10 TJ.-J. Lietal.

describes a condition, an event or a scenario, and an action specifies the desired behavior
when its associated trigger is activated [13, 42]. In EPIDOSITE, scripts can be triggered by
the content of Android notifications, or as a result of the launch of a specified app on
the phone.

EpposITE keeps a background Android accessibility service running at all times.
Through the Android accessibility API, the service intercepts system notifications and
app launches. If the content of a new notification contains the activation string of a stored
notification trigger (as shown in the example usage scenario), or an app associated with
an app launch trigger has just launched, the corresponding automation script for the
trigger will be executed. Figure 2c shows the interface with which the user can create
an automation that turns off the light when the YouTube app launches, after first creating
the “Turn off the living room light” script by demonstration.

These features allow scripts to be triggered not only by mobile apps for IoT devices,
as shown in the example usage scenario, but also by other third-party Android apps.
Prior research has shown that the usage of smartphone apps is highly contextual [6, 23]
and also varies [45] for different groups of users. By allowing the launching of apps and
the notifications from apps to trigger IoT scripts, the user can create highly context-
aware automation with EpmosITE, for example, to change the color of the ambient
lighting when the Music Player is launched, to adjust the thermostat when the Sleep
Monitor app is launched, or even to warm up the car when the Alarm app rings (and
sends the notification) on winter mornings.

Using the above two types of triggers, along with the external service trigger intro-
duced in the next section, user-demonstrated scripts for smartphone apps can also be
triggered by readings and status of IoT sensors and devices. As shown in [29], many
common tasks can be automated using PBD on smartphone apps. Some examples are
ordering a coffee (using the Starbucks app), requesting cabs (Uber app), sending emails,
etc. EPIDOSITE empowers users to integrate [oT smart devices with available smartphone
apps to create context-aware and responsive automations.

External Service Triggers
To expand the capabilities of EpDosITE to leverage all of the available resources, we
implemented a server application that allows EpPIDOSITE to integrate with the popular

RESTful EpPIDOSITE Clients

n IFTTT Web Service EPIDOSITE Server
AN
)

HTTP Request
i BN S 8 o

)] =)
""’le Clo
\ Messaging oo
N 300+ IFTTT 3 8 (Geyy

Supported Devices
and Services

Fig. 3. The architecture of the EPIDOSITE external service trigger mechanism.

Programming IoT Devices by Demonstration Using Mobile Apps 11

automation service IFTTT. Through this integration, an EpIDOSITE script can be triggered
by over 360 web services supported by IFTTT, including social networks (e.g., Face-
book, Twitter), news (e.g., ESPN, Feedly), email, calendar management, weather and
supported devices like smart hubs (e.g., Google Home, Amazon Echo), smart appli-
ances, fitness trackers, home monitors, and smart speakers. An EPIDOSITE script can also
be used to trigger actions for IFTTT-supported services. Figure 3 shows the overall
architecture for supporting external service triggers, consisting of the client side, the
server side, the IFTTT service and how they communicate.

An IFTTT applet consists of two parts: a trigger and an action, in which either part
can be an EpPmosITE script. If an EPIDOSITE script is used as the trigger, then an HTTP
request will be sent out to IFTTT via the EPIDOSITE server to execute the corresponding
IFTTT action when the trigger is activated. Similarly, if an EPIDOSITE script is used as
the action, then it will be executed on the corresponding client smartphone upon the
client application receiving a Google Cloud Messaging (GCM) message sent by the
EpposITE server when the associated IFTTT trigger is activated. The EpIDOSITE server
communicates with IFTTT through the IFTTT Maker channel, which can receive and
make RESTful HTTP web requests. The EpIDOSITE server side application is also highly
scalable and can handle multiple clients at the same time.

To create an IFTTT triggered script, the user first creates an EPIDOSITE script for the
“action” part by demonstration, where the user records the procedure of performing the
desired task by manipulating the phone apps. Then, the user goes to IFTTT, chooses
“New Applet,” and chooses a trigger for the script. After this, the user chooses the Maker
channel as the action. For the address for the web request, the EpIDOSITE app on the phone
will automatically generate a URL which the user can just paste into this field. The auto-
generated URL is in the format of:

http://[SERVER_ADDRESS]/client=[CLIENT_NAME]&scriptname=[SCRIPT_
NAME]

where [SERVER ADDRESS] is the address of the EpmositE server, [CLIENT_NAME]
is the name of the EpposITE client (which by default is the combination of the phone
owner’s name and the phone model. e.g., “Amy’s Nexus 6”) and [SCRIPT_NAME] is the
name of the EpIDOSITE script to trigger. The user can just paste this URL into the IFTTT
field (see Fig. 4).

The procedure to create an EpmposiTe-triggered IFTTT applet is similar, except that
the user needs to add “trigger an IFTTT applet” as an operation when demonstrating the
EPIDOSITE script, and then use the Maker channel as the trigger.

Cross-app Interoperability

Interoperability among IoT devices has been an long-time important challenge [14].
Sharing data across devices from different “ecosystems” often requires the user to
manually setup the connection using techniques like HTTP requests, which require
carefully planning and extensive technical expertise [11]. Middleware like Bezirk® and
[5, 16, 24, 41] supports IoT interoperation and provides a high-level representation

> http://developer.bezirk.com/.

http://developer.bezirk.com/

12 TJ.-J. Lietal

@ Complete trigger fields

. Complete action fields

Make a web request

This action will make a web request to a
publicly accessible URL. NOTE: Requests
may be rate limited.

(a)

Create trigger URL*

http://128.237.203.158:8082/clie
nt=TobyLi&scriptname=coffeema

chine
a Surround any text with *<<<*
and ">>>" to escape the content
Method *

GET v

(c) The method of the request e.g. GET, POST,
DELETE

Oon

(b)

Fig. 4. Creating an IFTTT applet that triggers an EpposITE script: (a) creating the trigger
condition “sleep duration below 6 h” using the Fitbit activity tracker; (b) creating the action of
running the EpIDoSITE script “coffeemachine” using the URL generated by EpiposiTE; (c) the IFTTT
applet created.

model for common IoT devices, but these also require the user to have sophisticated
programming skills.

EpIDOSITE supports the user in extracting the value of a TextView object in the user
interface of the an app by using a gesture during the demonstration, storing the value in
a variables and then using the values saved in these variables later in the script. All the
user needs to do to save a value is to click on the “Get a Text Element on the Screen”
option from the recording menu while demonstrating, circle the desired element on the
screen using a finger gesture (the yellow stroke in Fig. 5), and select the element in a
pop-up menu (see Fig. 5). Later when the user needs to enter a string in a script, the user
can instead choose to use the value from a previously created variable.

When a script is executed that contains a value extraction operation, EPIDOSITE will
automatically navigate as demonstrated to the user interface where the desired value is
located, and then will dynamically extract the value based on the resource ID and the
location of the corresponding TextView object. This approach does not require the
involved app to have any API or other data export mechanism. As long as the desired
value is displayed as a text string in the app, the value can be extracted and used in other
parts of the script.

Currently, EpmosITE only supports using the extracted values in later operations
exactly as they were displayed. As future work, we plan to support the reformatting and
transformation of the variable values, as well as common arithmetic and string opera-
tions on the values.

Programming IoT Devices by Demonstration Using Mobile Apps 13

[30 9.dli6ia]
Lab

EPIDOSITE Text Selection

Motion Detection l @)

Last Detection O
Last Detection 02:206um 02:20 ®
CANCEL OK
Sensitivity
Schedule

Fig. 5. Extracting the time of the last detection from a D-link motion sensor in the Mydlink Home
app using a circle gesture in EpiposiTE (Color figure online)

5 Limitations and Future Work

The current version of EPIDOSITE has several limitations. First, for executing an auto-
mation, the phone must be powered on and concurrently connected to all the devices
involved in the automation. If the phone is powered off, or disconnected from the
involved IoT devices, the automation will fail to execute. This limitation will particularly
affect EpIDOSITE’s applicability for devices that are connected to the phone via a local
network or through a short-range wireless communication technology (e.g., Bluetooth,
ZigBee, IR), since with these devices, the phone is restricted to be connected to the local
network, or physically within range of the wireless connection for the automation to
work. Second, EpIDOSITE automations need to run in the foreground on the main Ul thread
of the phone. Thus, if an automation is triggered when the user is actively operating the
phone at the same time (e.g., if the user is on a phone call), then the user’s interaction
with the phone will be interrupted. The automation execution may also fail if it is inter-
rupted by a phone event (e.g., an incoming phone call) or by the user’s action.

For some of the above limitations, an approach is to use a separate phone as the hub
for IoT automation, and to run EPIDOSITE on that phone instead of using the user’s primary
smartphone. By doing this, the separate phone can be consistently plugged in and stay
connected with the IoT devices to ensure that the automations can be triggered and
executed properly. Currently, a compatible Android phone can be purchased for less
than $50, which makes this solution affordable.

Further limitations include that the current version of EpipoSITE provides little assis-
tance in testing and debugging. When an automation uses a trigger that cannot be acti-
vated manually (e.g., at a future time, or due to a weather condition), the user may not
be able to demonstrate or test this automation. In the case that the controlling app of an

14 TJ.-J. Lietal.

IoT device is updated, the user may need to record the demonstration again if the user
interface of the app has changed, or if the procedure to complete the task is now different.
For the same reason, EPIDOSITE automation scripts may break if they are executed in an
environment with different IoT devices available, with different versions of smartphone
apps running, or on a smartphone with a different screen resolution. This limits the
sharing of EpIDOSITE scripts, and may cause runtime problems for EpposITE if the current
software or hardware environment changes. To fix an error during recording, the user
currently can only either record again from scratch, or manually edit the automation
script using the editing panel (Fig. 1c), which is not easy to use for an end user. For
future development, we plan to explore the designs of new end-user friendly testing and
debugging interfaces and new error handling mechanisms that can automatically modify
the script in case of a minor software update or when a different phone is used. The
improvements will also facilitate the sharing of EpIDoSITE scripts among different users.

Due to the technical limitations in the current programming by demonstration engine
in the system, tasks that involve the use of web applications are not supported by
EpposITE. EPIDOSITE also does not yet support recording gestures and sensory inputs (e.g.,
accelerometer, gyroscope) either, but these are planned for the future.

In this work, we enabled the user to trigger automations for IoT devices based on
the usage context of smartphones by providing the notification and app launch triggers.
For future work, we plan to generalize these capabilities, to design usable and easily
understandable ways for the end users to create automations combining the contents
displayed by various apps, the inputs from the available phone sensors, and the available
personal data on the phone. For example, using the location sensor of the phone, one
could enable different automation scripts for the same trigger depending on where the
user was. Existing context-aware computing research have contributed many technical
solutions for transforming the smartphone usage and sensor data into more meaningful
behavioral-centric personal data [43]. EposITE offers opportunities to connect user-
centric behaviors on smartphones and users’ smart home environments. We hope this
will empower the end users to create more intelligent and useful context-aware
applications.

We also plan to explore how to make it easier for end users to create more complex
automations with control structures such as compound conditionals and loops. AppsGate
[7] supports creating control structures in a syntax-driven editor using a pseudo-natural
language, which was shown to be easy for creating simple rules, but difficult for creating
compound conditionals. SmartFit [2] introduces an interactive graphical editor with
which end users can create conditionals using IoT sensor data for rule-based EUD
systems. However, it still remains a major design challenge to make it easier for end
users to express the logic and the control structures in programming by demonstration
systems. Gamut [31, 32] is a PBD system that can infer programming logic from multiple
examples from the user, but it has been shown to be hard for non-expert end users to
provide meaningful and helpful additional examples for inferring programming logics
[26, 31, 32]. We are currently investigating the approach of having the users talk about
their intentions using speech during the demonstration, and inferring the programming
logic using techniques from Al and natural language processing [28].

6

Programming IoT Devices by Demonstration Using Mobile Apps 15

Conclusion

In this work, we introduce EPIDOSITE, a new programming by demonstration system that
makes it possible for end users to create automations for consumer IoT devices on their
smartphones. It supports programming across multiple IoT devices and exchanging
information among them without requiring the devices to be of the same brand or within
the same “ecosystem”. The programming by demonstration approach minimizes the
necessity to learn programming concepts. EPIDOSITE also supports using arbitrary third-
party Android mobile apps and hundreds of available web services in the scripts to create
highly context-aware and responsive automations.

Acknowledgement. This work was supported in part by the Yahoo! InMind project.

References

10.

11.

12.

. Argall, B.D., etal.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5),

469-483 (2009)

. Barricelli, B.R., Valtolina, S.: A visual language and interactive system for end-user

development of internet of things ecosystems. J. Vis. Lang. Comput. (2017, in press)

. Barricelli, B.R., Valtolina, S.: Designing for end-user development in the Internet of Things.

In: Diaz, P., Pipek, V., Ardito, C., Jensen, C., Aedo, ., Boden, A. (eds.) IS-EUD 2015. LNCS,
vol. 9083, pp. 9-24. Springer, Cham (2015). doi:10.1007/978-3-319-18425-8_2

. Billard, A., et al.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.)

Springer Handbook of Robotics, pp. 1371-1394. Springer, Heidelberg (2008)

. Blackstock, M., Lea, R.: IoT interoperability: a hub-based approach. In: 2014 International

Conference on the Internet of Things (IOT), pp. 79-84. IEEE (2014)

. Bohmer, M., et al.: What’s in the apps for context? Extending a sensor for studying app usage

to informing context-awareness. In: Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication, pp. 1423-1426. ACM, New York (2013)

. Coutaz, J., Crowley, J.L.: A first-person experience with end-user development for smart

homes. IEEE Pervasive Comput. 15(2), 26-39 (2016)

. Cypher, A., Halbert, D.C.: Watch What I Do: Programming by Demonstration. MIT Press,

Cambridge (1993)

. Danado, J., Paterno, F.: Puzzle: a visual-based environment for end user development in touch-

based mobile phones. In: Winckler, M., Forbrig, P., Bernhaupt, R. (eds.) HCSE 2012. LNCS,
vol. 7623, pp. 199-216. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34347-6_12
De Russis, L., Corno, F.: HomeRules: a tangible end-user programming interface for smart
homes. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human
Factors in Computing Systems, pp. 2109-2114. ACM, New York (2015)

Demeure, A., Caffiau, S., Elias, E., Roux, C.: Building and using home automation systems:
a field study. In: Diaz, P., Pipek, V., Ardito, C., Jensen, C., Aedo, L., Boden, A. (eds.) IS-EUD
2015. LNCS, vol. 9083, pp. 125-140. Springer, Cham (2015). doi:
10.1007/978-3-319-18425-8_9

Dey, A.K,, etal.: A CAPpella: programming by demonstration of context-aware applications.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
33-40. ACM (2004)

http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1007/978-3-642-34347-6_12
http://dx.doi.org/10.1007/978-3-319-18425-8_9

16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

TJ.-J. Lietal.

Dey, A.K,, et al.: iCAP: interactive prototyping of context-aware applications. In: Fishkin,
K.P,, et al. (eds.) Pervasive Computing, pp. 254-271. Springer, Berlin Heidelberg (2006)
Edwards, W.K., Grinter, R.E.: At home with ubiquitous computing: seven challenges. In:
Abowd, Gregory D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 256—
272. Springer, Heidelberg (2001). doi:10.1007/3-540-45427-6_22

Fox, A., et al.: Integrating information appliances into an interactive workspace. IEEE
Comput. Graph. Appl. 20(3), 54-65 (2000)

Gama, K., et al.: Combining heterogeneous service technologies for building an Internet of
Things middleware. Comput. Commun. 35(4), 405-417 (2012)

Gonzélez Garcfa, C., et al.: Midgar: generation of heterogeneous objects interconnecting
applications. a domain specific language proposal for Internet of Things scenarios. Comput.
Netw. 64, 143-158 (2014)

Grabler, F., et al.: Generating photo manipulation tutorials by demonstration. In: ACM
SIGGRAPH 2009 Papers. pp. 66:1-66:9. ACM, New York (2009)

Greenberg, S.: Context as a dynamic construct. Hum.-Comput. Interact. 16(2), 257-268
(2001)

Guinard, D., etal.: Towards physical mashups in the web of things. In: 2009 Sixth International
Conference on Networked Sensing Systems (INSS), pp. 1-4. IEEE (2009)

Guinard, D., Trifa, V.: Towards the web of things: web mashups for embedded devices. In:
Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM
2009), in Proceedings of WWW (International World Wide Web Conferences), Madrid, Spain
(2009)

Humble, J., Crabtree, A., Hemmings, T., Akesson, K.-P., Koleva, B., Rodden, T., Hansson,
P.: “Playing with the bits” user-configuration of ubiquitous domestic environments. In:
Dey, Anind K., Schmidt, A., McCarthy, Joseph F. (eds.) UbiComp 2003. LNCS, vol. 2864,
pp. 256-263. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39653-6_20

Jesdabodi, C., Maalej, W.: Understanding usage states on mobile devices. In: Proceedings of
the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp.
1221-1225. ACM, New York (2015)

Katasonov, A., et al.: Smart semantic middleware for the Internet of Things. ICINCO-ICSO
8, 169-178 (2008)

Kubitza, T., Schmidt, A.: Towards a toolkit for the rapid creation of smart environments. In:
Diaz, P., Pipek, V., Ardito, C., Jensen, C., Aedo, L., Boden, A. (eds.) IS-EUD 2015. LNCS,
vol. 9083, pp. 230-235. Springer, Cham (2015). doi:10.1007/978-3-319-18425-8_21

Lee, T.Y., et al.: Towards understanding human mistakes of programming by example: an
online user study. In: Proceedings of the 22nd International Conference on Intelligent User
Interfaces, pp. 257-261. ACM, New York (2017)

Leshed, G., et al.: CoScripter: automating and sharing how-to knowledge in the enterprise.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
1719-1728. ACM, New York (2008)

Li, TJ.-J., et al.: Designing a conversational interface for a multimodal smartphone
programming-by-demonstration agent. In: Conversational UX Design CHI 2017 Workshop,
Denver, CO (2017, in press)

Li, T.J.-]J., et al.: SUGILITE: creating multimodal smartphone automation by demonstration.
In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM,
Denver (2017, in press)

Lieberman, H.: Your Wish is My Command: Programming by Example. Morgan Kaufmann,
San Francisco (2001)

http://dx.doi.org/10.1007/3-540-45427-6_22
http://dx.doi.org/10.1007/978-3-540-39653-6_20
http://dx.doi.org/10.1007/978-3-319-18425-8_21

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

Programming IoT Devices by Demonstration Using Mobile Apps 17

McDaniel, R.G., Myers, B.A.: Gamut: demonstrating whole applications. In: Proceedings of
the 10th Annual ACM Symposium on User Interface Software and Technology, pp. 81-82
ACM, New York (1997)

McDaniel, R.G., Myers, B.A.: Getting more out of programming-by-demonstration. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 442—
449 ACM, New York (1999)

Mennicken, S., et al.: From today’s augmented houses to tomorrow’s smart homes: new
directions for home automation research. In: Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pp. 105-115. ACM, New York (2014)
Modugno, F., Myers, B.A.: Pursuit: graphically representing programs in a demonstrational
visual shell. In: Conference Companion on Human Factors in Computing Systems, pp. 455—
456. ACM, New York (1994)

Myers, B.A.: Demonstrational interfaces: a step beyond direct manipulation. Computer 25(8),
61-73 (1992)

Myers, B.A.: Visual programming, programming by example, and program visualization: a
taxonomy. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 59-66. ACM, New York (1986)

Pintus, A., et al.: The anatomy of a large scale social web for internet enabled objects. In:
Proceedings of the Second International Workshop on Web of Things. pp. 6:1-6:6. ACM,
New York (2011)

Raffle, H., et al.: Beyond record and play: backpacks: tangible modulators for kinetic behavior.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
681-690. ACM, New York (2006)

Ricquebourg, V., et al.: The smart home concept: our immediate future. In: 2006 1st IEEE
International Conference on E-Learning in Industrial Electronics, pp. 23-28 (2006)
Schmidt, A.: Programming ubiquitous computing environments. In: Diaz, P., Pipek, V.,
Ardito, C., Jensen, C., Aedo, 1., Boden, A. (eds.) IS-EUD 2015. LNCS, vol. 9083, pp. 3-6.
Springer, Cham (2015). doi:10.1007/978-3-319-18425-8_1

Song, Z., et al.: Semantic middleware for the Internet of Things. In: 2010 Internet of Things
I0T), pp. 1-8 (2010)

Ur, B, et al.: Practical trigger-action programming in the smart home. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 803-812. ACM,
New York (2014)

Wiese, J.S.: Evolving the Ecosystem of Personal Behavioral Data (2015)

Zhang, T., Briigge, B.: Empowering the user to build smart home applications. In: Proceedings
of 2nd International Conference on Smart Homes and Health Telematics (ICOST2004),
Singapore (2004)

Zhao, S., et al.: Discovering different kinds of smartphone users through their application
usage behaviors. In: Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 498-509. ACM, New York (2016)

Zhong, Y., et al.: Smart home on smart phone. In: Proceedings of the 13th International
Conference on Ubiquitous Computing, pp. 467-468. ACM, New York (2011)

http://dx.doi.org/10.1007/978-3-319-18425-8_1

	Programming IoT Devices by Demonstration Using Mobile Apps
	Abstract
	1 Introduction
	1.1 Advantages

	2 Related Work
	3 Example Usage Scenario
	4 System Design and Implementation
	4.1 Implementation
	4.2 Key Features

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgement
	References

