
Kite: Building Conversational Bots from Mobile Apps
Toby Jia-Jun Li∗

Carnegie Mellon University
Oriana Riva

Microsoft Research

ABSTRACT
Task-oriented chatbots allow users to carry out tasks (e.g., ordering
a pizza) using natural language conversation. The widely-used slot-
filling approach for building bots of this type requires significant
hand-coding, which hinders scalability. Recently, neural network
models have been shown to be capable of generating natural “chit-
chat” conversations, but it is unclear whether they will ever work
for task modeling. Kite is a practical system for bootstrapping task-
oriented bots, leveraging both approaches above. Kite’s key insight
is that while bots encapsulate the logic of user tasks into conversa-
tional forms, existing apps encapsulate the logic of user tasks into
graphical user interfaces. A developer demonstrates a task using a
relevant app, and from the collected interaction traces Kite auto-
matically derives a task model, a graph of actions and associated
inputs representing possible task execution paths. A task model
represents the logical backbone of a bot, on which Kite layers a
question-answer interface generated using a hybrid rule-based and
neural network approach. Using Kite, developers can automatically
generate bot templates for many different tasks. In our evaluation,
it extracted accurate task models from 25 popular Android apps
spanning 15 tasks. Appropriate questions and high-quality answers
were also generated. Our developer study suggests that develop-
ers, even without any bot developing experience, can successfully
generate bot templates using Kite.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile
computing systems and tools; Natural language interfaces; Sys-
tems and tools for interaction design;

ACM Reference Format:
Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational Bots
from Mobile Apps. In MobiSys ’18: The 16th Annual International Conference
on Mobile Systems, Applications, and Services, June 10–15, 2018, Munich,
Germany. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3210240.3210339

1 INTRODUCTION
The promise and excitement around conversational chatbots, or sim-
ply bots, has rapidly grown in recent years. Besides the popularity of
intelligent assistants, we are witnessing the rise of specialized bots

∗Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’18, June 10–15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5720-3/18/06. . . $15.00
https://doi.org/10.1145/3210240.3210339

(also called skills in Alexa and actions in Google Assistant [14, 77]).
Particularly useful are task-oriented bots that act as agents on be-
half of users to interact with external services to accomplish specific
tasks, such as booking a cab, making a restaurant reservation or
ordering food, all using natural language conversation.

Today, most task-oriented bots are built using the slot-filling
approach [12, 42]. The user’s phrase (e.g.,“I want a coffee”) indicates
an intent, an action the system supports, such as “order-coffee (type,
size)”. Input parameters necessary for intent execution, such as
coffee type and size, are known as slots. A control structure defines
the steps for a multi-turn conversation between the system and the
user to collect all slots necessary to fill the intent.

Slot-filling has proven reliable but requires significant developer
effort. First, control structures, typically in the form of finite-state
automata, are hand-designed for each task. These can be complex
as they need to account for many possible execution paths. Second,
to support user interactions in natural language, machine learning
models for understanding user questions and answers need to be
trained. Training requires a large number of utterances, i.e, sample
phrases usersmay use in the conversation. Even to a simple question
like “What is your party size?” users may answer in many different
ways such as “3”, “all of us”, “me and my wife” or “not sure, I’ll tell
you later.” (and more examples in Figure 7). To train robust models,
a bot developer must consider all such possible phrase variations
and provide dozens of utterances for each slot and for each intent.
Finally, developers need to enumerate possible values for each slot
to boost slot recognition in the language understanding model. As
a result, this whole process requires significant manual encoding,
thus hindering scalability to new tasks and domains.

An alternative to slot-filling is a corpus-based approach where
bots are automatically trained from datasets of past conversa-
tions [23, 53, 54, 70, 71, 73, 78]. This approach has shown promise
for non task-oriented “chit-chat” bots [11, 65, 79], where the sole
purpose of the bot is to maintain a realistic conversation. It is un-
clear whether this approach alone can model also task-oriented
bots. The purpose of task-oriented bots is to get all the needed in-
formation for completing a task through conversation with the user.
Purely corpus-based machine-learned approaches cannot guaran-
tee critical in-task constraints are met (e.g., a user cannot reserve
a restaurant without specifying a time), and they lack a model to
ensure completion of an actual objective in the task [78, 85]. These
systems are also difficult to train due to the scarcity of domain-
specific conversation logs.

To address the tension between the hand-coded but reliable
approach of slot-filling, and the automated but non-goal nature
of machine-learned bots, we developed Kite, a practical system
for quickly bootstrapping task-oriented bots leveraging both ap-
proaches. Our key insight is that while task-oriented bots encap-
sulate the logic of user tasks into conversational forms, existing
mobile applications encapsulate it into graphical user interfaces
(GUIs). For instance, an app as well as a bot for ordering coffee

96

https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/3210240.3210339

MobiSys ’18, June 10–15, 2018, Munich, Germany Toby Jia-Jun Li and Oriana Riva

will guide the user through the same steps of picking a coffee type,
selecting a size, adding toppings, etc. From interaction traces and
GUIs of mobile apps, Kite automatically infers task models, defined
as graphs of actions (i.e., intents) and associated inputs (i.e, slots)
representing a task’s possible execution paths.

Kite’s goal is to enable developers to bootstrap bots for a variety
of tasks, using existing applications, and in an intuitive and easy-to-
learn manner. In Kite’s new programming model, bot developers
define a task by demonstrating how typical users may carry out that
task using a relevant app – apps are unmodified and could include
third-party apps they did not build. Kite logs app interactions and
processes such traces to extract the corresponding task model.

A core contribution of Kite is a precise and high-coverage task
model extraction approach. Kite uses the UI tree model to represent
an app’s interaction data in each screen, including UI elements,
their relationships and the interactions performed on them. To infer
task models from app interaction traces, Kite abstracts UI screens
and events into intents and slots. This process is prone to false
positives and false negatives. For example, a logged UI event (e.g.,
user entering text in a field) is likely to indicate a slot, but UI events
may also be irrelevant (e.g., due to an unrelated popup) or duplicate
(e.g., when selecting an item from a list, multiple events of different
types are generated), thus leading to false positives (i.e., UI events
incorrectly spawning a slot). Likewise, while navigating to a new
page in the app is likely to indicate a new intent (e.g., transitioning
to a page showing restaurant information can be associated with
the GetRestaurantInfo intent), single pages may embed dynamic
sub-pages through tabs or scrolling, which, if missed, cause false
negatives. In §3.1, we describe how Kite is designed to reduce false
positives and false negatives through aggregation of user traces
and through a conservative slot and intent classification approach.

A task model represents the logical backbone of a bot. On top of
it, Kite generates a question-answer interface for conversation. Kite
seeks an automated approach so it cannot rely solely on linguistic
rules nor crowdsourcing, as in related systems [10, 47, 83]. Due to
the scarcity of domain-specific conversation datasets, it also cannot
rely on a pure machine-learned approach [24, 69, 84, 86, 87]. Hence,
Kite adopts a hybrid rule-based and neural network approach. (1)
From an app GUI and on-screen contents it infers properties and
semantics of slots, so to be able to generate prompt questions by
means of few semantic rules. (2) To generate questions for slots that
cannot be semantically classified, and to generate utterances for
user answers, Kite trains neural network transduction models [76]
using a total of 6M Twitter conversation pairs. This approach was
able to produce at least one appropriate question for each slot, and
many high-quality and varied utterances for user answers (§5.2).

Kite is the first system to automatically bootstrap task-oriented
bots from mobile apps. Kite significantly reduces the manual work
required by traditional slot-filling and language model training,
which are the steps of the bot building process a regular developer
is least likely to be familiar with. Overall, this work makes the
following contributions:

• A set of techniques to extract task models from app interac-
tion traces, which guarantee high recall and precision (§5.1).

• A careful application of state-of-the-art techniques to gener-
ate question-answer interfaces (§3.2).

Define control
structure

Intents

Slots

Connect to

service backend

Invoke

service APIs

Return results

to user

Build conversational
interface

Questions & order

Slot valuesConstraints

Utterances

intents answers

Figure 1: Bot building process. Kite addresses every step ex-
cept those with dashed lines.

• A tool (Figure 6) for visualizing and editing task models as
well as for iteratively testing their conversation flow, which
was tested with real developers (§5.3).

• An evaluation with 25 popular Android apps from which
Kite extracted high precision and high recall task models
spanning 15 different types of task.

2 BACKGROUND AND MOTIVATION
In this section we motivate our work by illustrating how task-
oriented bots are built today, and we outline how our system works
and what it seeks to enable.

2.1 Bot building process
Task-oriented bots aim to understand a user request and execute the
related task. Figure 1 shows the steps involved in building such bots
and how Kite helps in this process. The first two steps are unique
to bots and require knowledge and skills that a regular developer
is least likely to have.

Step 1. A developer must define a control structure represent-
ing the kinds of action, termed intents, the system can support.
Each intent is associated with a collection of slots, and may have
constraints on other intents. For example, in a restaurant-booking
bot, the intent ReserveRestaurant may have slots restaurant name,
party size and time, and ConfirmReservation may have a dependency
on it. Based on this structure, the bot does slot filling [42, 51, 80],
i.e., collecting slots for each intent to then perform the associated
action(s). The control structure is usually encoded in a finite-state
automata that is hand-designed for each task by the developer. Kite
helps developers automatically generate a similar control structure
with app-derived task models (§3.1).

Step 2. A developer must define a conversational interface
for the control structure, which can recognize user intents and slots,
can query users for the required slots, and can understand user
answers. For example, from a phrase “I want a table for 2” the system
may recognize the intent ReserveRestaurant and the slot party-size=2,
and query the user for the missing slot time. In earliest systems
(e.g., [81]) this step was accomplished using semantic grammars
consisting of thousands of hand-written rules. Today, developers
can train machine learning models for language understanding
using any of the available tools (e.g., [7, 22, 25, 41, 61]).

Figure 2 illustrates the model building process using an example
with Dialogflow [22]. First, the developer supplies user utterances
that map to each intent in the task (left side of the figure). Second,
the developer defines slots for each intent, tags any slot value ap-
pearing in the provided utterances, provides prompt questions for
each slot, and specifies the order of prompts (center of the figure).

97

Kite: Building Conversational Bots from Mobile Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

Intent
Slot values

Utterances

Intent slots and prompt questions

Figure 2: Building a conversation interface with Di-
alogflow [22]. In Dialogflow slots are called “entities”.

Third (not shown), the developer repeats the same procedure to
parse user answers, i.e., specifying phrases for possible user answers
and tagging slot values. Finally, to facilitate slot recognition from
user phrases, possible values for each slot need to provided (right
side of the figure). After specifying dozens of utterance samples
for each intent and for each slot (at least 30 in the Alexa guide-
lines [6]) and after listing slot values, a model can be trained, which
should provide reasonable accuracy on inputs that are similar to
the examples.

In reality, it is hard to train a robust language understanding
model mainly because different phrasings may be missing from the
provided utterances, as it is hard for a developer to enumerate them
all. Kite helps developers by automatically generating utterances
for answer recognition using open-domain conversational datasets
(e.g., Twitter) (§3.2) and by extracting slot values from mobile apps.
Kite does not yet provide utterances for intent recognition.

Step 3. The last step involves mapping intents to actual APIs and
invoking a service backend to retrieve results. In the case of an
app developer, the bot’s service backend can be the app’s backend.
The developer needs to expose APIs for the new bot client. This
step is out of scope for Kite.

2.2 Goals and overview
Bot scalability. The large amount of hand-coding and the natural
language processing (NLP) skills required for building a bot par-
tially explain why while the number of bots available on popular
platforms such as Alexa, Messenger, Slack, Kik, etc. is constantly
increasing [14, 75, 77], it is still tiny. For example, as of April 2018,
the Google play store has over 3.2 million apps and Alexa has 31,300
skills, which is roughly the number of apps added to the play store
in 2-3 weeks. Most mobile apps, even popular ones, have no bot
counterpart today. From the 320 most popular Android apps (in the
weather, food, entertainment, news, shopping, music, education,
travel, navigation, and productivity categories) we found that only
28 (8.8%) have an Alexa skill and 14 (4.4%) have a bot in Slack. More-
over, such bots usually support a very small subset of the app’s
functionality [56]. For example, Starbucks has a skill for re-ordering
what a user previously ordered (but a user cannot order new items).
OpenTable has a skill to book a specific restaurant, but it does not
support searching for new restaurants. Certainly, it is not expected

that apps and bots will have identical functionality, but arguably
enough existing bots are limited [34, 35, 66].

Goals. This work explores how we can reduce the developer
effort required for generating task-oriented bots. Our goal is to
offer a system that allows a developer to automatically generate a
bot template specifying the intents associated with the task, their
dependencies and their slots, where each slot comes with possible
values, prompt questions and a set of possible user answers. We
strive for a system that meets the following goals: (1) Task coverage:
a developer should be able to use Kite to create bot templates for
a variety of tasks; (2) App flexibility: most existing apps should
be amenable to task extraction; and (3) Low-learning barrier : a
developer should find Kite easy to use and collecting interaction
traces for task model generation should be natural and intuitive.

It is not our goal to automatically generate a complete ready-to-
use bot. The developer is expected to manually revise the generated
bot templates, correct errors (e.g., missing slots), improve its natural
conversation quality (e.g., selecting prompt questions other than
the defaults), and use the generated user answers to train language
understanding models. More importantly, in order to function, a bot
needs to parse user intents and be connected to a service backend.

Kite in action. Developers use Kite by iterating through three
steps: (i) demonstration, (ii) template authoring, and (iii) conversation
testing.We illustrate this process through the example of a developer
who wants to build a restaurant reservation bot and uses OpenTable
for demonstration.

The first step is to demonstrate how typical users may carry
out the task with the app. To obtain as complete as possible a task
model, the developer can demonstrate completing the task through
multiple different paths, such as selecting a restaurant from a rec-
ommended list versus searching by location. The developer can
also demonstrate “sub-tasks” such as viewing restaurant reviews
or menus to have them reflected in the task model. We recommend
demonstrating the task about five times depending on task com-
plexity. This programming-by-demonstration approach imposes
low learning barriers for the developers, since they only need to use
the app through its GUI as a regular user [18]. Prior research has
also shown that even non-developers can successfully demonstrate
common tasks on mobile apps [55].

After the demonstration, the developer imports the collected
interaction traces into Kite (Figure 6), which, after processing, dis-
plays an interactive visualization of the computed task model and
a question-answer interface. The developer can revise it, e.g., by
ensuring intents and slots are correct, by selecting the most appro-
priate prompt from the given list, etc., and then interactively test the
bot preview (Figure 6 right). Once done, the template could be fur-
ther exported to one of the existing bot platforms (e.g., [5, 36, 60]).

Target developers. Developers using Kite may bootstrap bots
which are similar in functionality to apps that they may have or
may have not implemented. For the first class of developers, Kite
could work as a conversion tool that can automate operations like
enumerating intents, slots, slot values, and more importantly, ques-
tions and answers for the conversational interface. For the second
class of developers who did not build the app, Kite can be used as an
exploration tool that extracts the app’s business logic and represents
it into a bot format. This could be the case of a bot development

98

MobiSys ’18, June 10–15, 2018, Munich, Germany Toby Jia-Jun Li and Oriana Riva

Task model extraction

Twitter

dataset

trace
collection

trace
aggregation

intent/slot
extraction

Neural sequence transduction

data
collection

data
annotation

model
training

Question/

answer

generationEntity
extraction

answer2question

slot questions

slot answers

question2answer

task model

bot

template

Figure 3: Kite system architecture.

company (e.g., [1]) which builds bots on behalf of app developers or
that creates personal assistants spanning multiple app domains. For
example, imagine a developer designing an assistant for “planning
movie-nights” where users can buy movie tickets, search for online
movies, explore dining options, arrange transportation, and so forth.
Kite makes it easier to use existing movie, food or cab-booking apps
to explore the bot design. The bot developers who participated in
our study confirmed these use cases (more in 5.3).

3 SYSTEM DESIGN
Wedescribe howKitewas designed tomeet the aforementioned goal
of creating bot templates for many different tasks, using existing
apps, and in an easy-to-learn manner. Figure 3 shows the system
architecture. The two main modules are (i) task model extraction
and (ii) question/answer generation.

3.1 Task model extraction
Kite’s key insight is that from the interaction traces collected when
performing a task with an app, it is possible to infer the logical
structure of that task, known as task model. A task model encodes
the sequence of intents and slots necessary to complete the task, as
well as the dependencies between intents and slots (e.g., one cannot
confirm a restaurant reservation without specifying the number of
people and the time).

Before describing in details task models and how Kite constructs
them, we give an intuition for why they can be extracted from
mobile apps and what challenges it entails.

3.1.1 Task models in mobile apps. Compared to desktop applica-
tions, due to the phone screen size, mobile apps tend to display less
content organized in separate pages that a user can interact with
and navigate between. A page displays content according to its UI
layout. It contains UI elements (buttons, textboxes, lists, etc.), which
are organized in a UI tree (like a DOM tree), where nodes are UI
elements and a child element is contained within its parent. Some
UI elements (e.g., buttons) are interactable as opposed to those that
just display content (e.g., text labels).

The organization of an app’s content into small, distinct pages
makes it easier to abstract UI interactions into intents and slots. Fig-
ure 4 shows three screens from a user interaction with OpenTable
where the user searches for a restaurant (screen a), selects one from
a list (not shown), views information about it (screen b), and makes
a reservation (screen c). Here one can recognize intents and slots:

Figure 4: Example user interaction with the OpenTable An-
droid app.

StartRestaurantSearch (screen a), ViewRestaurantInfo, ViewRestauran-
Menu and ViewRestaurantReviews (screen b) which all take as slot
the restaurant name (selected in the restaurant list screen), and
ReserveRestaurant (screen c) which takes as slot the reservation time
(selected in screen b).

To extract intents and slots programmatically, Kite needs to
translate the “app language” into the “bot language”. In the app
language, a user executes a task by interacting with UI elements
and transitioning from one page to another. In the bot language,
a user executes a task by filling slots and navigating a graph of
intents. There is a correspondence between app pages and intents,
and between UI elements and slots. However, this mapping is not
obvious. In contrast, the translation process is prone to false neg-
atives and false positives. Each app page could map to one intent,
but it could also map to multiple intents (as in Figure 4b where
the page corresponds to at least three different intents). Likewise,
interactable UI elements, such as list items or buttons, could each
map to one slot or to none (e.g., the Search button in screen a is
not a slot). In general, the regular structure of distinct and nicely
labeled UI elements and pages as it appears in an app’s screens is
not what an automated program observes at the application frame-
work level, where (1) UI notifications may be duplicate, missing or
empty, (2) UI labels appearing on the screen may not be present in
the triggered UI events, and (3) UI layouts may dynamically change
depending on content and user actions. Next, we describe how Kite
deals with these challenges.

3.1.2 Trace collection. To extract information from an app, we
can adopt (1) static analysis, where we examine the source code of
the app without executing it, or (2) dynamic analysis, where we
analyze the app by executing it. While static analysis can extract
the layout specification of screens in the app [3, 68], it cannot ac-
cess most of actual contents within the app, since they are usually
fetched or generated at runtime. As the app’s contents are essential
to infer the app’s task model, we opt for dynamic analysis. Dynamic
analysis can be performed using a UI automation tool that auto-
matically interacts with the app and navigates to various pages in
the app (e.g., [39, 58]), but this approach would fail to explore an
app in a way that mirrors human usage. Hence, we rely on human
traces currently provided by bot developers. This is little effort:

99

Kite: Building Conversational Bots from Mobile Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

5–6 traces per task which can be collected in few minutes. In the
future, Kite could support user traces produced via crowdsourc-
ing (e.g., [19, 21]) or logs collected by app developers for analytics
purposes (e.g., [29, 37]).

Kite represents an interaction trace as a sequence of UI events.
Each UI event is associated with the UI element on which the action
was performed (e.g., clicking on a button or entering text in a text
field) and with the entire UI tree including all UI elements on the
screen at the moment of the interaction with their hierarchical
relationships, types and contents. One way to capture UI events
is to leverage accessibility services [26, 55]. However, accessibil-
ity services tend to miss UI events that are essential to Kite. For
instance, the Android accessibility API provides clicks and text
view changes events, but it does not provide touch events nor no-
tifications for page transitions (i.e., startActivity() and stopActivity()
notifications). Hence, Kite modifies the application framework of
the OS to complement the accessibility service (more details in §4).

3.1.3 Trace processing. Kite processes the application traces
provided by a developer to extract a task model. We define a task
model as a directed graph T = (I ,D) comprising a set I of intents
together with a set D of intent dependencies. Each graph has a
start node (StartOfConversation) and an end node (EndOfConversation).
Every path in the graph, from start to end node, represents a possible
execution of the task. Each intent i ∈ I contains a unique identifier,
a descriptive name for the intent (e.g., “Confirm Reservation”), a list
of sample user utterances for invoking the intent and an ordered list
of slots (which can be empty). Each slot contains a unique identifier,
a name, a probability indicating whether the slot is mandatory
(p = 1 when the slot is mandatory), a list of observed possible slot
values, a list of prompts for querying the user about the slot, and
a list of sample user answers for the slot. As an example, Figure 6
gives a visualization of the task model extracted from OpenTable.

Task model extraction is a 3-step process consisting of trace
aggregation, intent extraction and slot extraction. We describe each
step next.

Trace aggregation. We expect a developer to demonstrate a
task multiple times. Multiple traces may show completing the same
task in different ways, or in the same way with different inputs. The
first type of redundancy is necessary to ensure model completeness,
as one trace is unlikely to capture all possible execution paths.
The second type of redundancy helps with model accuracy, as we
explain later. Kite first aggregates all traces from the same app at the
page granularity, using the page’s class name. Then, it aggregates
UI events in each page. Developers do not always assign identifiers
to their UI elements or, if they do, they often assign non-unique
identifiers, so Kite uses a combination of factors in determining
whether two target UI elements from two different UI events are the
same (i.e., class name, view id, location on screen, text labels, and
position in the UI tree hierarchy). During UI event aggregation, all
text labels associated with individual UI elements are merged, e.g.,
all strings entered in a text field in separate interactions become
“possible values” for the same UI event.

Intent extraction. As said above, an intuitive way of identify-
ing intents is to map each page transition to an intent. For instance,
in Figure 4, transitioning from screen b (RestaurantProfileActivity)

to screen c (ConfirmReservation) may be recognized as the ReserveR-
estaurant intent. This approach may produce mostly correct results,
but can also cause false negatives because an app page may embed
multiple actions accessible by scrolling, swiping, clicking on a but-
ton or opening a menu. In Android, embedding in a single page
multiple dynamic sub-pages (e.g., Fragments), such as the three
tabs shown in Figure 4b, has become common practice. There are
also actions that can be taken without leaving the current page (e.g.,
sorting results in a list). We call such multiple intents embedded
within a page sub-intents.

To extract sub-intents from sub-pages, one option is to track
sub-pages by instrumenting the application framework, but sub-
page support libraries are often distributed externally or developer
customized. For instance, in Android, Fragment libraries (e.g., an-
droid.support.v4 or v7 [8]) are included directly by the developer in
the application package. Relying on app instrumentation is not
scalable, so we take a more general approach and detect sub-intents
directly from UI trees.

Our intuition is that sub-intents often hide behind UI elements
whose immutable text labels indicate distinct actions (e.g., Menu,
Reserve, Sort by price, etc.), and that once invoked the contents in
the screen change significantly. Kite classifies UI elements present
in the aggregated traces as sub-intents if (1) their text labels are
immutable (i.e., the label is the same in all traces), (2) their labels
contain verb phrases, and (3) if once interacted with they cause the
UI tree and its contents to change significantly, without triggering a
page transition. For the last condition, Kite constantly compares the
current UI tree with the previously captured one in terms of size,
number of images, number of text elements, and content changes
in text elements. Such a strict set of conditions reduces the chances
of false positives. On the other hand, because Kite performs such
evaluation on aggregated traces, false negatives are also reduced.
For example, during trace aggregation, the click events associated
with the three tabs in Figure 4b are aggregated under the same
UI element; the three conditions above are verified so they are
correctly recognized as sub-intents. If those three UI events were
processed individually, only the Reserve tab would be classified as a
sub-intent (because the labels “Menu” and “Reviews” are not verbs).

Tracking page transitions coupled with sub-intent detection
produced good results for intent extraction in our task dataset
(§5.1). Intent names are currently derived from class names of the
pages. For better labels, an alternative approach is to process textual
contents appearing on screens.

Slot extraction.Most UI events captured in an interaction trace
do not correspond to slots thus possibly causing false positives. Kite
performs aggressive data cleaning. Kite discards UI events of the
following types: (1) UI events associated with immutable content,
such as buttons with static labels, that when interacted with trigger
a transition to a new page or a dialog; (2) UI events associated
with invisible UI elements, which can occur when the app overlays
multiple layouts on top of each other – a user interacts with the
visible UI element but the UI event may be reported (also) by the
underlying layout which is not visible to the user. (3) UI events
associated with empty content, which often occur when selecting
an item in a list or a menu – this interaction fires two UI events, one
associated with the parent (the list/menu container) and one with

100

MobiSys ’18, June 10–15, 2018, Munich, Germany Toby Jia-Jun Li and Oriana Riva

Figure 5: A simplified illustration of how UI traces are represented, using OpenTable as an example. UI events listed for
SearchCriteriaActivity (with 1–11 identifiers) are drawn on the app screens shown on the left side.

the child (the actual item), but while the child contains relevant
content (i.e., the selected label) the parent is empty.

To clarify, Figure 5 shows all UI events reported during a user
interaction with SearchCriteriaActivity in OpenTable. Note that some
UI events occur in separate dialogs, but are associated with the
same page, for a total of 11 events. Out of these, only 3 events (with
identifier 2, 5 and 6) are relevant to slot extraction. Events 1, 3, 10
and 11 are eliminated because of condition (1) above, events 7, 8
and 9 because of condition (2), and event 4 because of condition (3).

After data cleaning, Kite extracts slots from the remaining UI el-
ements, and assigns them to the appropriate intent. Slots extracted
from a page A are assigned to the intent extracted from the transi-
tion from A to a subsequent page. Slot names are extracted from
accessible text labels, on-screen text labels or developer-specified
identifiers of the UI element; if none of these is available or the
extracted name is meaningless (e.g., button_dtp), Kite names slots
with their entity type computed based on all the slot values (as
described in §3.2). For example, a slot with possible values “New
York” and “Miami” is labeled as “city”. The values of a slot are all
texts collected from the corresponding UI events (e.g., labels ap-
pearing on interacted buttons, strings entered in text fields, etc.).
In the case of list-like containers, Kite extracts all items contained
in the list, regardless of which were actually clicked. The order of
slots is based on the order in which UI events were logged in the
traces. In this way, if there is a predominant order in which users
enter inputs in the app, this order will be preserved in the task
model. Slot probabilities for optional slots are computed based on
the number of observations where each slot is filled in the traces.

3.1.4 Example of extracted task model. Figure 6 shows the
restaurant reservation model extracted from the OpenTable app,
prior to developer editing. Each node in the graph represents an
intent. The flow starts from StartOfConversation and ends in End-
OfConversation. One can find restaurants in two ways: by viewing
restaurant suggestions such as “nearby restaurants” or “outdoor sit-
ting” (through the SearchResults intent) or by doing a custom search
(through SearchCriteria and SearchResults_21). For each restaurant in

1The naming SearchResults_2 is to distinguish two intents both extracted from transi-
tions to the same page (SearchResultsActivity) with different functionality: restaurant
suggestions and custom search.

the results, one can retrieve profile, reservation options, menu and
reviews (using the respective intents), and then proceed to make
a reservation (ConfirmReservation) and submit it (ConfirmReserva-
tion_done). Slots are represented as shown at the center of the figure.
A custom search (SearchResults_2) requires three slots: search query,
city, and party size and time. Each slot has four fields: name, identi-
fier, values, prompt question, and utterances for possible answers;
the last 2 fields are generated as described next.

Task models of this type encapsulate the logic behind a chatbot.
During execution the chatbot tries to fill the slots for a target intent
by asking the prompt questions associated with each of its slots.
If any of the slots are optional, the bot first asks whether the user
wishes to provide that slot. After completing filling slots for an
intent, if the intent has multiple possible next intents, the bot asks
the user which intent she wants to execute. Otherwise, the bot
directly goes to the next intent and starts filling its slots.

3.2 Question and answer generation
The previous step produces the logical flow of a bot. To navigate it
using natural language, a bot needs to be able to ask questions and
understand answers. Hence, Kite needs to deal with: (1) question
generation: identifying one appropriate prompt question for every
slot, and (2) answer generation: generating large sets of possible user
answers for each prompt question so that an answer understanding
model can be trained.

Automatically generating a question given unstructured text
is a well-studied problem. Current approaches include rule-based
techniques [4, 43, 62, 67], which are reliable but require manually-
designed rules for declarative-to-interrogative sentence transfor-
mation, and corpus-based techniques [24, 69, 84, 86, 87], which are
automated but are constrained by the scarcity of domain-specific
conversation datasets. Either because of the extensive manual work
or because of the extensive corpus of data, Kite cannot directly
re-use these techniques without violating its scalability goal.

Moreover, Kite’s question generation problem is different from
the state-of-the-art. First, in Kite the inputs to question generation
are slots, each consisting of a name, some possible values, and the
UI event from which the slot was spawned. Hence, Kite’ textual
inputs are not complete sentences, but instead brief strings without

101

Kite: Building Conversational Bots from Mobile Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

Figure 6: Kite web app for visualizing, editing, previewing, and interactively testing the bot template.

context (e.g.,“Table for 2 today at 7:00PM”). Second, Kite needs to
generate a question for which all (or most) slot values represent
acceptable answers. Hence, it needs to generate “non-factoid” ques-
tions. In contrast, state-of-the-art techniques usually take as input
full sentences and produce factoid questions. For example, given
the input “The dog is asleep on his bed” one such system would
output the question “On what is the dog asleep?” [43]. In Kite, given
a slot value “Table for 2 today at 7PM” we do not want outputs like
“When was the table for 2?” or “What was at 7PM?”, but instead
something like “For how many people and at what time?”.

To solve this problem, Kite takes a hybrid rule-based and neu-
ral network approach, exemplified in Table 1. Kite generates wh-
questions using a few simple semantics rules based on the following
elements: slot name, entity type (computed based on all slot values),
and whether the slot values contain user-generated or application
content. To classify the content, Kite uses the type of UI event from
which the slot was spawned. For instance, a UI event of type “text-
entered” is classified as user-generated, whereas a “text-click” is
classified as application content. This distinction helps formulate
the questions as “What is your ...” or “Do you want to select ...”,
respectively. The type of UI element (e.g., checkbox, list, button,
etc.) could also help formulate the questions.

However, many UI elements in most apps lack descriptive text
labels and so generate non-meaningful slot names, and entity extrac-
tion can fail on many fields (as in the first and third row in Table 1).
This is why Kite also relies on neural network models. Recent work
has attempted to use neural networks to solve general sequence-
to-sequence learning problems in NLP, such as speech recognition
and machine translation [44, 74]. As question answering can also
be seen as mapping a sequence of words representing the ques-
tion to a sequence of words representing the answer [78] (and vice
versa), we train neural sequence transduction models using a

question-response dataset of Twitter conversations. As described
in detail in §4, we train two types of model: answer2question (A2Q)
and question2answer (Q2A). Figure 7 shows the top 10 questions
generated for the slot with value “table for 2 tonight at 6:30PM” and
the answers produced if one of the produced questions is selected.
In this example, but also in general, Kite generated more relevant
answers than questions (§5.2). This is an acceptable result because
for a bot developer it is enough to obtain one good prompt question,
and it is more important to obtain many diversified answers for
training answer understanding models.

4 IMPLEMENTATION
App trace collection. Kite currently supports task extraction from
Android apps. We modified the application framework of Android
6.0 and wrote an app for logging UI events during task demon-
stration. The app registers as an accessibility service listening to
VIEW_CLICKED, VIEW_LONG_CLICKED and VIEW_TEXT_CHANGED
events in the background. We modified the application framework
to capture touch events, StartActivity and StopActivity lifecycle events,
and UI tree of the current screen. By doing this, for each type of UI
event listed above, the app could log information about the source
UI element (e.g., text labels, accessible labels, identifier and screen
locations) and the current UI tree (including all UI elements on
the screen at the time of the event). A developer can either install
our custom OS on their Android smartphones or run our Android
X86 image in a VM hosted locally or in the cloud (we currently
use Microsoft Azure VMs). A third option, that we have not yet
implemented, is to make our Android VMs accessible from a web
browser using existing technology (e.g., [19, 21]).

Server and web app. The rest of Kite is Android agnostic. We
implemented a Java application for processing interaction traces,
and a web app in AngularJS to edit bot templates and preview the

102

MobiSys ’18, June 10–15, 2018, Munich, Germany Toby Jia-Jun Li and Oriana Riva

Table 1: Questions generated for the three slots in Figure 6 center (prior to developer editing).
Slot name Slot values Entity User-gen Rule-based question Neural network model question
search query barbecue, pasta, ... NULL True What is your [search query]? What did you have?
id_list New York, Seattle, ... city False Which [city] do you want to choose? Which location?
button_dtp Table for 2 today at 7PM, ... time False Which [time] do you want to choose? How many are in your partywhat time ?

A2Q questions for “table for 2 tonight at 6:30PM”
y all got a table for two in ten minutes?
how about now?
are you still planning to come by 15th and m today?
what time do you close?
what time are you planning on coming in?
how many are you and what time are you coming though?
how many people are you fitting in there for that?
how many people are in line?
how many are you and what time are you planning on coming in? ✓
what time are you getting there?
O2A answers for “how many are you and what time
are you planning on coming in?”
6:00 pm, party of 2
how about 11?
probably around 9!
just 2
hopefully around 9.
2:45
4 people at 6pm on sat ?
not sure, but we ll keep you updated throughout the day
4 people at 6pm on saturday
4:00 pm, see you soon!

Figure 7: Example of questions and answers produced by the
A2Q and Q2A models (Output limited to the top 10 results).

conversation flow, thus supporting iterative design. GoJS [72] is
used for visualizing task graphs.

Entity extraction. Kite tags slots with entity types by using
state-of-the-art entity extraction techniques. Given an input string
(i.e., a slot value), (1) Kite determines its type by verifying whether
it matches the name of an entry in two knowledge bases: Open-
StreeMap for cities, addresses, buildings and various types of POIs
(restaurants, schools, etc.) and a very large proprietary knowledge
base for book titles, movie names, dish types, food ingredients,
meal types, beverages, and few others; (2) it uses Stanford NER [27]
for recognizing entities including persons, organizations, money,
percents, dates and times; and (3) it classifies common structured
data (e.g., URLs, email addresses, phone numbers) using regular
expressions. If a slot has inconsistent entity types across its possible
values, a NULL type is returned.

Neural sequence transduction models. For training we used
the recently-released Transformer [76] in TensorFlow [2]. Trans-
former is the first transduction model relying entirely on self-
attention to compute representations of its input and output, with-
out using recurrent neural networks (RNNs) or convolution. Before
adopting Transformer we tested other models, and found that Trans-
former models outperformed RNN models with long short-term
memory (LSTM) [40] and gated recurrent units (GRUs) [16] in terms

Table 2: Dataset sizes and BLEU [63] scores for Q2A and A2Q
models. 10 models in total.

Domain # of pairs A2Q BLEU Q2A BLEU
Restaurants 381, 221 1.00 0.33
Movies 54, 423 0.92 0.69
Libraries 23, 103 0.35 0.24
Coffee-shops 105, 723 0.56 0.16
Multi-domain 5, 443, 096 1.62 0.74

of loss, BLEU [63] score, training time and human judgment on the
output quality, which confirms the findings in [76].

We collected 5 training datasets of 2-turn Twitter conversations
from 2012 to 2016 filtered in the following way. Initially, we pro-
duced one multi-domain dataset of over 5M conversations filtered
by keywords related to specific entities (food, recipes, movies, etc.)
and tasks (booking, cooking, etc.). Then, for 4 domains (restaurants,
movies, libraries and coffee-shops), we collected 4 smaller datasets
by filtering by business name. We obtained Twitter handles of rele-
vant businesses (e.g., @Starbucks for coffee shops and@McDonalds
for restaurants). Then, for every domain, from all pairs of tweets
{Q,A}, where A is a reply to Q and Q contains a question mark,
we selected those where either Q or A contained either a mention
(“@”) or a hashtag that matches the business. Dataset sizes are
reported in Table 2. Before training we performed entity extraction
on each Q and A, and appended any entity type we could recog-
nize in it with high confidence (e.g., “it opens at 7pm | TIME”). We
trained a question2answer and an answer2question model for each
of the 5 datasets. All models were trained on two NVIDIA Tesla
K40 GPUs, for 250,000 steps. Each model training took from 2 to 7
days, depending on the dataset size.

The 10 trained models are hosted on a GPU-equipped HTTP
server. To generate prompts for a slot, the Kite web app sends a
request including the domain and the slot values (along with their
entity types, if available). To generate max likelihood prompts,
the GPU server invokes the answer2question model of the cor-
responding domain and returns the top-N results. Likewise, the
question2answer model can be queried with a question associated
to a slot to produce the top-N answers. To provide diversity in the
results, Kite removes duplicate results by computing the word-level
Levenshtein edit distance, and omitting any utterance u with dis-
tance d less than 0.1 ×max(u .lenдth, r .lenдth) for any utterance r
already in the top-N results.

5 EVALUATION
We evaluate Kite based on (1) How well does it extract task models
from a sample of representative apps? (2) How well does it generate
questions and answers for bot conversations? (3) How usable and
useful is it for developers?

103

Kite: Building Conversational Bots from Mobile Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

Table 3: The 25 apps on which we tested Kite along with their category, tested task and number of collected traces. For the
intents and slots in the extracted task model, we report their count, precision and recall.

App Category Task Traces Intents Slots
Total Precision Recall Total Precision Recall

Open Table Food Reserve restaurant 8 9 0.89 1 13 1 0.93
AllRecipes Food Find recipe 11 9 1 0.90 9 0.80 1
KCLS Books Hold book 8 10 1 0.83 11 1 1
Dunkin Donuts Food Order coffee 3 5 1 1 7 1 0.88
Flixster Entert. Find movie 5 4 1 1 4 1 1
Zagat Food Find restaurant 5 3 1 1 3 1 1
Trip Advisor Travel Reserve restaurant 4 5 1 1 8 1 1
RecipeBook Food Find recipe 5 3 0.67 1 4 1 1
Big Oven Food Find recipe 8 8 0.88 1 6 1 1
Princeton Lib Books Hold book 8 8 1 1 7 1 0.88
Cincinnati Lib Books Hold book 5 7 1 1 4 1 0.57
Tim Hortons Food Order coffee 4 2 1 1 8 0.88 0.78
McDonald’s Food Order coffee 6 5 1 1 11 0.82 0.82
Starbucks Food Order coffee 5 6 1 0.86 7 0.86 0.6
AMC Theaters Entert. Buy movie ticket 4 4 1 1 5 1 0.83
Cinemark Entert. Buy movie ticket 7 7 1 1 5 1 0.71
BBCNews News Find news article 7 9 1 1 6 1 1
Kayak Travel Search for flights 4 5 1 1 5 1 0.71
Booking.com Travel Book hotel 3 10 1 1 14 0.93 0.81
Papa Johns Food Order pizza 3 6 1 1 10 0.83 0.89
NHL Sports Check game score 5 4 1 1 3 1 1
Amazon Music Music Find song 9 3 1 1 6 0.86 0.83
Zillow House Find house listing 5 7 0.71 1 8 0.89 0.7
Comcast Xfinity Tools Pay cable bill 5 4 1 1 10 1 1
WebMD Health Look up symptoms 7 9 1 1 16 0.89 0.93
Average (σ) 5.8 (2.1) 6.1 (2.4) 0.97 (0.09) 0.98 (0.05) 7.6 (3.4) 0.95 (0.06) 0.88 (0.13)

5.1 Accuracy of task models
We selected 31 popular Android apps from various domains which
are relevant to task-oriented bots such as food, books, entertain-
ment, travel, etc. Apps were selected based on popularity in the
Google Play Store or relevance in the task domain.2 Out of these
31 apps, 5 were used for designing and debugging Kite (top 5 rows
in Table 3), 6 were excluded due to technical limitations of our
trace collection mechanism (details in § 7), and the remaining 20
were used for evaluation (i.e., Kite was executed on them without
any further modifications). Reasons for the excluded apps included:
prevalence of web views for which Kite cannot collect type, UI tree,
and other necessary information (Nook, IMDB); app crashes due to
our modified Android framework (Hipmunk, Dunn Bros, Spotify),
unusually high UI refresh rate (Yummly) or unusually large UI lay-
outs with over 5000 UI elements per page (IMDB) that made our
trace collector unstable – an app usually has 200–300 UI elements
per page. Hence, 25 apps were used in total.

We selected one task from each of the 25 apps and collected
multiple (avg=5.8, σ=2.1) interaction traces. For apps where the
same task could be executed in many different ways we collected
more traces. For instance, in AllRecipes, a recipe can be selected in
four ways (keyword search, dinner spinner, recommended recipe,
similar recipe), so covering all these paths required at least 4 traces.
During trace collection, we also tried to use different values for

2For instance, we selected Starbucks for its popularity, and Tim Hortons and Dunkin
Donuts because they are popular coffee-shop chains [64].

the task parameters so to “exercise” the app’s options as much as
possible. During app interaction, we created a “ground truth task
model” by manually recording whether each UI interaction we
performed represented an intent or a slot.

As reported in Table 3, Kite generated task models for all 25 apps.
We evaluated task models in terms of precision and recall of intent
and slot extraction. Intent precision is computed as the number
of correct intents out of all extracted intents, while intent recall
as the number of correct intents out of all intents that could have
been extracted from the traces (i.e., based on the ground truth task
model). Similar definitions hold for slot recall and slot precision.
Across all apps, intent extraction achieved precision and recall close
to 100% (for 19 out of 25 apps they were both 100%). Slot extraction
achieved 95% precision and 88% recall.

False negatives in slot extraction (i.e, missed slots) occurredwhen
the user input was provided through UI widgets such as sliders or
incremental counters (i.e., where the value is based on the number
of clicks), which Kite does not capture. False positives occurred
in slot extraction because (1) some fields representing the same
slot in different screen layouts were not combined, resulting in
duplicate slots, or (2) UI elements such as buttons, instead of having
immutable labels, had dynamic labels reflecting the status of the
system (e.g., “View 88 Results”), thus being incorrectly classified as
slots. Finally, false positives occurred in intent extraction because of
advertising activities that were recognized as intents (RecipeBook
and BigOven) or because of duplicate intents caused by limited

104

MobiSys ’18, June 10–15, 2018, Munich, Germany Toby Jia-Jun Li and Oriana Riva

visibility of the app structure (OpenTable and Zillow). In general,
these kinds of false positives should be easily identifiable by the
developer in the Kite web tool.

Overall, Kite was able to work successfully with a random set
of popular Android apps. 6 out of 31 apps were excluded due to
tractable engineering issues. Overall, Kite produced accurate intent
graphs, andmost errors could be fixed by extendingUI event capture
to additional UI widgets.

5.2 Question/answer relevance and quality
Automatic evaluation.As reported in Table 2, we computed BLEU
scores3 for our 10 neural network models. The BLEU scores may
seem low, which however, is not untypical of neural conversation
models (e.g., in [30, 52, 84], also using Twitter datasets, BLEU scores
ranged from 0.44 to 1.66). Most likely due to the dataset sizes, the
multi-domain model yielded the highest BLEU scores, while the
coffee-shops and library domains yielded the lowest. We comple-
mented automatic evaluation with human evaluation.

Human evaluation. We extracted a subset of questions and
answers generated for our test tasks, and asked three independent
raters to judge them based on relevance and quality.

Question evaluation. The question dataset was produced as fol-
lows. We selected 5 tasks (“make a restaurant reservation”, “find a
recipe”, “hold a book”, “order coffee”, and “buy a movie ticket”), and
for each one we selected an app (the first in alphabetical order in
that task domain) and the corresponding task model. We then ex-
tracted all questions that Kite generated for all slots in these 5 task
models, thus obtaining a dataset of 1562 questions (1093 unique)
for 38 slots. Three independent raters were shown a screenshot of
the screen from which the slot was extracted and the slot’s possible
values, and were asked to identify whether each of the generated
questions was appropriate on a binary scale for the given slot in
the context of the task.

For all slots in the 5 tasks, at least one generated question was
identified as “appropriate” by all three raters. In total, 96 questions
were identified as appropriate by all three raters. Among them,
49 were generated using the answer2question models4, 37 using
rules based on the entity type, and 10 using rules based on the
UI element’s text label (these methods were described in §3.2).
The inter-rater agreement [28] was κ = 0.91, suggesting excellent
agreement [48]. Although the accuracy of the generated questions
may seem low (9%), for the purpose of Kite, it is far more important
to ensure at least one appropriate question in the generated set
as only one question is needed for conversation. In contrast, Kite
needs to generate as many appropriate answers as possible to train
robust language understanding models.

Answer evaluation. For each slot in the previously described
question dataset, we selected one appropriate question from the
generated questions. Among those, there were three questions that
were overly general (e.g., “Which one do you want to choose?”),
so to obtain more realistic results, we modified them to be more
specific (e.g., “Which size do you want to choose?”), as an actual
3using the BLEU implementation in Moses [46] using n-grams up to N = 4, which is
consistent with [63].
4Question generation used the domain-specific models listed in Table 2 for all tasks
except for the recipe task which used the multi-domain model. The model’s output
was limited to a maximum of 10 results per slot value.

Table 4: Human evaluation for generated answers (5-point
scale). We report number of answers, avg (and σ) of rele-
vance and quality.
Task Multi-domain models Domain-specific models
domain # Relev Quality # Relev Quality
Restaurants 103 2.9 (1.3) 4.5 (1.1) 136 4.2 (0.9) 4.9 (0.3)
Movies 80 4.1 (1.2) 4.9 (0.5) 80 4.2 (1.4) 4.9 (0.3)
Libraries 40 2.5 (1.6) 4.8 (0.7) 40 3.1 (1.9) 3.5 (1.6)
Coffee 60 2.8 (1.0) 5.0 (0.1) 73 3.6 (1.4) 4.9 (0.3)
Recipes 100 3.5 (1.5) 4.5 (1.2) 95 3.9 (1.2) 4.8 (0.4)

developer would do in Kite. 11 questions were also duplicate across
slots (e.g. common ones such as “What time do youwant to choose”).
Finally, we excluded 5 questions of the type “What’s your name?”
or “What’s your phone number?” for which answer generation is
not necessary. Overall we obtained 22 unique questions.

For each question, we invoked two question2answer models (the
domain-specific model5 and the multi-domain model, as listed in
Table 2) and limited the response to a maximum of 20 answers per
model per question. 807 answers were generated. Three indepen-
dent raters rated each answer in terms of quality and relevance on
a five point scale (5 is better), where quality focuses on whether
the answer is grammatically correct and fluent, and relevance eval-
uates whether the answer appropriately responds to the question.
Table 4 summarizes the results. The average Spearman correlation
coefficients were ρ = 0.83 for relevance and ρ = 0.78 for quality
for all pairs of raters, suggesting high inter-rater reliability among
the three raters.

The generated questions have high quality, indicating that they
are mostly grammatically correct. Relevance is lower, but still ac-
ceptable for our use, as a developer can discard inappropriate an-
swers. The domain-specific models outperformed the multi-domain
model in relevance for all 5 tasks, which confirms our hypothesis
that using domain-specific data helps generate more relevant utter-
ances. The human judgment of relevance for answers generated by
the domain-specific models correlates with their BLEU scores.

5.3 Developer study
We conducted a preliminary in-lab developer study to gauge the
usability and usefulness of Kite for developers. We recruited 10
participants aged 22-37 (mean = 27.4, SD = 4.6), 7 males and 3
females. All but one participant considered themselves experienced
software developers. Three had bot development experience, two
of whom were professional bot developers in a large tech company.

Each 1-hour study session consisted of a system overview, a
walk-through tutorial, a bot development task, a questionnaire, and
an informal discussion session. During the overview, we explained
the goals of Kite and how it fits into the bot development process.
In the tutorial, we showed how to use Kite to create a template
for a coffee-ordering bot using traces from Dunkin Donuts. Each
participant was then asked to use Kite to create a template for a
restaurant reservation bot using traces we had previously collected
for OpenTable. To get familiar with OpenTable, we asked them
to use it once to search for a restaurant and pretend making a

5For the recipes task the restaurants specific model was used.

105

Kite: Building Conversational Bots from Mobile Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

Table 5: Participant feedback on the usefulness and usability
of Kite (5-point Likert scale)
Statement Mean SD
I find the system helpful in bot development. 4.5 0.85
This system would help me understand the flow of the
task that I’m building a bot for.

4.8 0.42

I feel the system is easy to use. 4.2 0.79
This system can help me save my time. 4.7 0.67
The task model extracted from the app is useful. 4.8 0.42
The slots extracted for intents are useful. 4.7 0.48
The prompts generated for each slot are useful. 4.1 0.74
The sample utterances generated for slots are useful. 3.6 0.97
I’m satisfied with my experience using this system. 4.5 0.71
I’d want to use this system if I need to build a chatbot. 4.6 0.70

reservation. Then, we asked them to iteratively edit and test the
bot template using the Kite web app and the bot preview feature
(Figure 6), until they were satisfied with its quality.

After the task, each participant completed a questionnaire on
the usefulness and usability of the system. The questions asked
participants to rate 10 statements on a 5-point Likert scale from
“strongly disagree (1)” to “strongly agree (5)”. Finally, we had a
discussion session with the participant to solicit their questions
and feedback on the system.

Results. All 10 participants successfully created a template for
the restaurant bot. The average task on time was 21.4 minutes (SD
= 4.0). As shown in Table 5, participants found Kite useful in the
bot development process, and were satisfied with their experience.

Although we demonstrated Kite in the tutorial, some partici-
pants took longer to figure out how the structure of the task model
mapped to the actual conversation in the bot preview tool. This,
however, did not slow them down for too long, as they quickly
understood this mapping by iteratively trying using different val-
ues for intent names, slot names and prompts for generating bot
previews. One way to accelerate the construction of such mental
maps could be adding a preview of sample conversation snippets on
the selected slot or intent when the developer edits the task model.

Some participants found it insufficient to rely only on the ex-
tracted possible values and the generated names in the Kite web app
to understand the purpose of slots and intents. They referred back
to the OpenTable app to help understand the task model, which
could also be a result of their lack of familiarity with the app and
the task used in the study. This could be addressed by attaching
app screenshots to the corresponding parts in the task model.

Participants considered the interactive visualization of the task
model particularly helpful in the bot development. A participant,
who is a professional bot developer, commented that she usually
spent lots of time manually coming up with these graphs, so the
generated visualization of extracted task models in Kite was very
helpful. Prompt generation was considered useful too, but a par-
ticipant also said that writing a prompt manually is not too hard
either. As for the sample utterance generation, participants with
experience in bot development could immediately appreciate its
value. The others recognized its usefulness after we explained the
current practice of training such models. The bot preview feature
was also heavily used in the study.

Our participants were very impressed that Kite enabled them to
generate a bot prototypewith correct and reasonable conversational
flows in a short amount of time with little developer effort required.
However, they also expressed the need to modify the app-derived
models to better fit the conversational experience. For example, in
the Dunkin Donuts app, the generated bot would ask 5 consecutive
questions (size, roast type, flavor, topping and sweetener) about
customizing the coffee. A participant considered these questions to
be too lengthy and unnecessary, expecting a better-designed bot to
only ask about these options if the user proactively asked for, or to
ask first a higher-level question (e.g., “Do you want any adds-on?”).
This finding confirms the differences between designing for GUIs
and designing for chatbots, reported in guidelines on conversational
UX design (e.g., [6]): bot conversations should be brief, as going
through 5 questions in conversation (either by text or by speech)
would take longer and require higher cognitive load than skimming
through 5 sets of options in a GUI.

Although our focus so far has been on quickly bootstrapping
bot prototypes with correct and reasonable conversational flows,
futureworkwill look into helping developers to enablemore natural
conversations. Extending task model extraction to real user traces
will also allow us to generate task models that highlight user usage
so to identify, for instance, mandatory and optional slots, default
and preferred slot values, or most common execution paths.

Overall, participants agreed that Kite is helpful in bot develop-
ment, since it automates a big portion of what would otherwise
need to be done manually. The results also suggest that Kite has a
low learning barrier.

6 RELATEDWORK
Conversational bots. Most task-oriented bots are built using slot-
filling, which is hard to scale. Bot tools like Dialogflow [22] and
LUIS.ai [61] offer basic templates for frequent use cases like weather,
calendar, music, etc., but they are rather limited and only support
single-turn conversations. Kite goes beyond single-turn conver-
sations by modeling complete task workflows, and can support
many types of task. Existing tools for utterance generation [31, 33]
are limited to simple string permutations given a dictionary of
terms [32]. Kite’s neural transduction models can generate more
varied utterances and take only one string as input.

Non-task oriented bots can be implemented using rule-based [17,
82] or corpus-based approaches [23, 53, 54, 70, 71, 73, 78]. The
latter has been successfully used in social media [65, 79] and movie
corpus [11]. It is yet to demonstrate whether this approach can
work for multi-turn task-oriented bots [13, 30], which is Kite’s
target. It is also limited by the scarcity of large in-domain corpus.

Hybrid Code Networks (HCNs) [85] is an approach to make
machine-learned systems practical by combining a recurrent neu-
ral network with developer hand-coded rules. HCNs reduce the
amount of training data to the expense of developer effort. In con-
trast, Kite reduces both by leveraging app GUIs. Yet, HCNs can
evolve over time through supervised or reinforcement learning
based on conversation logs collected while the system is in use.
Kite could be used to bootstrap HCNs with less developer effort.
Another hybrid approach is the “knowledge-grounded” conversa-
tion model proposed in [30], which injects knowledge from textual

106

MobiSys ’18, June 10–15, 2018, Munich, Germany Toby Jia-Jun Li and Oriana Riva

data (i.e., restaurant reviews on Foursquare) into models derived
from conversational data (Twitter) to generate informative answers.
We borrow from [30] the idea of combining conversational (Twit-
ter) and non-conversational data (mobile apps). However, [30] only
models single-turn responses and depends on in-domain knowl-
edge sources such as Foursquare; Kite is not automated as [30], but
targets multi-turn conversations in many domains.

Natural language interfaces for apps. NLify [38],
Speechify [45] and PixelTone [49] add natural language in-
terfaces to existing app GUIs, allowing users to issue single
commands to an app by voice. In contrast, Kite targets completing
tasks independently from app GUI with multiple dialog turns, all
using natural language. Sugilite [55], Epidosite [57] and CoCo [50]
allow users to demonstrate a task with an Android app or a
website, tag it with a single natural language command, and
later re-execute it automatically. We share with these systems
the goal of helping users complete their tasks using natural
language and learning a task from user demonstration. However,
these are effectively record-and-replay systems with little task
parametrization. Kite extracts fully-parametrized task models and
goes beyond single-turn interactions.

Mining of human-generated app traces. Interaction traces
generated using UI automation tools (e.g., [15]) are not suitable
for extracting task models. Kite relies on app exploration driven
by humans. ERICA [21], Rico [19] and ZIPT [20] mine human-
generated app traces to support UX designers. ERICA processes
interaction traces to detect UI elements and layouts representing
common “user flows”. ZIPT allows for testing of UI designs at scale
to identify usability issues. Rico is a repository ofmobile app designs.
Kite shares with these systems a similar approach for collecting
and representing app traces, but application traces are abstracted at
two different levels. Kite uses app traces to learn app functionality
represented as functions with inputs; ERICA, Rico and ZIPT study
app traces to learn UI patterns. In Kite a “task” represents a long
sequence of interactions to complete a transaction such as booking
a restaurant; in ERICA, Rico and ZIPT a task is a short interaction
representing a single action such as adding, searching or composing.

Analytics frameworks [9, 29, 37, 59] collect user data at scale
and provide developers with insights, but the analysis is generally
UI-focused, not at the level of app business logic. In the future, Kite
could process traces collected for analytics purposes.

7 LIMITATIONS
Platform support. Kite extracts task models from Android apps,
but its design does not preclude other platforms such as iOS, web,
or IoT apps. Our main assumption is that a GUI interaction fires
an event that can be captured and analyzed. The complexity of
extending Kite to other platforms is a function of i) how exten-
sively UI event capture is provided by the application framework,
for example through accessibility services; and ii) how much app
contents are organized into distinct pages (i.e., the less content in a
page, the easier it is to classify at the intent level).

Trace collection. Our current prototype has some limitations
which forced us to exclude 6 apps in our evaluation. It does not
recognize gestures and sensory inputs: these are more common
in games, maps, or image editing apps, which are not the focus

of task-oriented bots. Kite tracks embedded web views in apps,
but only at a coarse granularity because accessibility APIs do not
report a web view’s content type (e.g., text field or button) nor its
UI tree. Traces are currently demonstrated manually by developers.
In the future, we plan to use real user traces, collected for analytics
or via crowdsourcing. We also plan to incorporate UI automation
(e.g., [39]) to automate the trace collection to further reduce the
developer effort.

Natural interaction. Our goal for bots was to generate appro-
priate and grammatically-correct dialogs.We did not aim for dialogs
that sound natural by referring to previous terms, avoid repetition,
or promote variation. As in prior work [47], crowdsourcing could
refine our questions. We also did not test the quality of language
understanding models trained with our generated answers. Kite-
generated bots do not include intents for actions that are not directly
accessible in the corresponding app GUI. Kite also targets bots that
use a flow chart with a clearly-defined control structure to guide
users towards task completion. Next-generation bots will make
such flow less explicit and aim for more fluid interactions that can
better resemble human conversations. However, like others [78, 85],
we believe that future bots will still require some form of task model,
to ensure interaction consistency and to satisfy in-task constraints.

Integration with bot platforms and external APIs. Kite
does not generate ready-to-use bots, but rather bot skeletons. An
operational bot needs at least: (1) connection to APIs of external
services, (2) a UI for communicating API results, and (3) the training
of language understanding models for answers and intents. Kite
could be integrated with existing bot frameworks [5, 36, 60], which
already provide such functionality. For language understanding,
Kite provides sample utterances for answers. With existing NLP
tools [22, 61] a developer can quickly train a model. However, Kite
does not yet provide utterances for training intent recognition,
which we leave for future work. If specifications of external APIs
for intent execution are available, future versions of Kite could also
automatically construct API calls based on slot filling and validate
user inputs based on constraints of the API parameters.

8 CONCLUSIONS
Existing approaches to building bots require either extensive man-
ual work or an extensive corpus of data, both of which hinders
scalability. Kite does not generate fully-functional bots, but it does
automatically provide a bot template starting from few application
traces and deals with the part of making a bot which a regular
developer is least likely to be familiar with. We have used Kite with
25 apps in a variety of domains, and showed that our templates are
comprehensive and precise. Users who interacted with Kite found it
useful and easy-to-use. We envision Kite becoming part of existing
bot platforms, where developers can convert their apps or explore
other apps to create conversational experiences.

ACKNOWLEDGMENTS
We thank our shepherd, Yubin Xia, and the anonymous reviewers
for their feedback. We also thank Chris Brockett and Michel Galley
for their help in training the neural network transduction models,
and Brad Myers for his feedback on drafts of this paper.

107

Kite: Building Conversational Bots from Mobile Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

REFERENCES
[1] 2017. BotsCrew. http://botscrew.com/.
[2] MartÃŋn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proc. of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI’16). USENIX Association, 265–283.

[3] Khalid Alharbi and Tom Yeh. 2015. Collect, Decompile, Extract, Stats, and Diff:
Mining Design Pattern Changes in Android Apps. In Proc. of the 17th International
Conference on Human-Computer Interaction with Mobile Devices and Services
(MobileHCI ’15). ACM, 515–524. https://doi.org/10.1145/2785830.2785892

[4] Husam Ali, Yllias Chali, and Sadid A Hasan. 2010. Automation of question
generation from sentences. In Proc. of the Third Workshop on Question Generation,
QG2010.

[5] Amazon Alexa. 2017. Alexa Skills Kit. https://developer.amazon.com/
alexa-skills-kit.

[6] Amazon Alexa - Voice Design Guide. 2017. What Users Say - Making sure
Alexa understands what people are saying. https://developer.amazon.com/
designing-for-voice/what-users-say/.

[7] Amazon AWS. 2017. Amazon Lex. https://aws.amazon.com/lex/.
[8] Android. 2017. Support Library. https://developer.android.com/topic/libraries/

support-library/index.html.
[9] Appsee. 2017. https://www.appsee.com/.
[10] Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing Gao, and Murat

Demirbas. 2014. Crowdsourcing for Multiple-choice Question Answering. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI’14).
AAAI Press, 2946–2953. http://dl.acm.org/citation.cfm?id=2892753.2892959

[11] Rafael E. Banchs. 2012. Movie-DiC: A Movie Dialogue Corpus for Research
and Development. In Proc. of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers - Volume 2 (ACL ’12). Association for
Computational Linguistics, 203–207.

[12] Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry
Thompson, and Terry Winograd. 1977. GUS, a Frame-driven Dialog System. Artif.
Intell. 8, 2 (April 1977), 155–173.

[13] Antoine Bordes and Jason Weston. 2016. Learning End-to-End Goal-Oriented
Dialog. CoRR abs/1605.07683 (2016). http://arxiv.org/abs/1605.07683

[14] Business Insider. 2017. Amazon’s Alexa has gained 14,000
skills in the last year. http://www.businessinsider.com/
amazon-alexa-how-many-skills-chart-2017-7.

[15] Pei-Yu (Peggy) Chi, Sen-Po Hu, and Yang Li. 2018. Doppio: Tracking UI Flows and
Code Changes for App Development. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA,
Article 455, 13 pages. https://doi.org/10.1145/3173574.3174029

[16] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
arXiv:1412.3555 [cs] (Dec. 2014). http://arxiv.org/abs/1412.3555 arXiv: 1412.3555.

[17] Kenneth Mark Colby, Sylvia Weber, and Franklin Dennis Hilf. 1971. Artificial
Paranoia. Vol. 2. 1 – 25 pages.

[18] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming
by demonstration. MIT press.

[19] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proc. of the 30th Annual ACM
Symposium on User Interface Software and Technology (UIST ’17). ACM, 845–854.
https://doi.org/10.1145/3126594.3126651

[20] Biplab Deka, Zifeng Huang, Chad Franzen, Jeffrey Nichols, Yang Li, and Ranjitha
Kumar. 2017. ZIPT: Zero-Integration Performance Testing of Mobile App De-
signs. In Proc. of the 30th Annual ACM Symposium on User Interface Software and
Technology (UIST ’17). ACM, 727–736. https://doi.org/10.1145/3126594.3126647

[21] Biplab Deka, ZifengHuang, and Ranjitha Kumar. 2016. ERICA: InteractionMining
Mobile Apps. In Proc. of the 29th Annual Symposium on User Interface Software and
Technology (UIST ’16). ACM, 767–776. https://doi.org/10.1145/2984511.2984581

[22] Dialogflow. 2017. Build natural and rich conversational experiences. https:
//dialogflow.com/.

[23] Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra,
Alexander H. Miller, Arthur Szlam, and Jason Weston. 2016. Evaluating Pre-
requisite Qualities for Learning End-to-End Dialog Systems. In Proc. of ICLR.
http://arxiv.org/abs/1511.06931

[24] Xinya Du, Junru Shao, and Claire Cardie. 2017. Learning to Ask: Neural Question
Generation for Reading Comprehension. In Proc. of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Vancouver, Canada, 1342–1352. http://aclweb.
org/anthology/P17-1123

[25] Facebook. 2017. Wit.ai. https://wit.ai/.

[26] Earlence Fernandes, Oriana Riva, and Suman Nath. 2016. Appstract: On-the-
fly App Content Semantics with Better Privacy. In Proc. of the 22nd Annual
International Conference on Mobile Computing and Networking (MobiCom ’16).
361–374.

[27] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incor-
porating Non-local Information into Information Extraction Systems by Gibbs
Sampling. In Proc. of the 43rd Annual Meeting on Association for Computational
Linguistics (ACL ’05). Association for Computational Linguistics, 363–370.

[28] Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

[29] Flurry. 2017. Flurry Analytics. https://y.flurry.com/.
[30] Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng

Gao, Wen-tau Yih, and Michel Galley. 2017. A Knowledge-Grounded Neural
Conversation Model. CoRR abs/1702.01932 (2017). http://arxiv.org/abs/1702.
01932

[31] GitHub. 2017. alexa-js/alexa-utterances. https://github.com/alexa-js/
alexa-utterances.

[32] GitHub. 2017. Code example: miguelmota/intent-utterance-generator. https:
//lab.miguelmota.com/intent-utterance-expander/example/.

[33] GitHub. 2017. Code: miguelmota/intent-utterance-generator. https://github.com/
miguelmota/intent-utterance-generator.

[34] Gizmodo. 2017. Facebook Chatbots Are Frustrating and Useless. https://gizmodo.
com/facebook-messenger-chatbots -are-more-frustrating-than-h-1770732045.

[35] Gizmodo. 2017. The Amazon Echo Now Has 10,000
Mostly Useless ’Skills’. https://gizmodo.com/the-amazon-
echo-now-has-10-000-mostly-useless-skills-179269536.

[36] Google. 2017. Actions on Google. https://developers.google.com/actions/.
[37] Google. 2017. Google Analytics. https://analytics.google.com/.
[38] Seungyeop Han, Matthai Philipose, and Yun-Cheng Ju. 2013. NLify: Lightweight

Spoken Natural Language Interfaces via Exhaustive Paraphrasing. In Proc. of the
2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’13). ACM, 429–438. https://doi.org/10.1145/2493432.2493458

[39] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
2014. PUMA: Programmable UI-automation for Large-scale Dynamic Analysis
of Mobile Apps. In Proc. of the 12th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys ’14). ACM, 204–217. https://doi.org/
10.1145/2594368.2594390

[40] Sepp Hochreiter and JÃĳrgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780.

[41] IBM. 2017. Watson. https://www.ibm.com/watson/developer/.
[42] Daniel Jurafsky and James H. Martin. 2017. Speech and Language Processing (3rd

ed.). Chapter 29. Draft available online at https://web.stanford.edu/~jurafsky/
slp3/29.pdf.

[43] Saidalavi Kalady, Ajeesh Elikkottil, and Rajarshi Das. 2010. Natural language
question generation using syntax and keywords. In Proc. of the Third Workshop
on Question Generation, QG2010.

[44] Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Continuous Translation
Models.. In EMNLP. ACL, 1700–1709.

[45] Tejaswi Kasturi, Haojian Jin, Aasish Pappu, Sungjin Lee, Beverley Harrison, Ra-
mana Murthy, and Amanda Stent. 2015. The Cohort and Speechify Libraries for
Rapid Construction of Speech Enabled Applications for Android. In Proc. of the
16th Annual Meeting of the Special Interest Group on Discourse and Dialogue. As-
sociation for Computational Linguistics, 441–443. http://aclweb.org/anthology/
W15-4661

[46] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings
of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration
Sessions (ACL ’07). Association for Computational Linguistics, Stroudsburg, PA,
USA, 177–180. http://dl.acm.org/citation.cfm?id=1557769.1557821

[47] Igor Labutov, Sumit Basu, and Lucy Vanderwende. 2015. Deep Questions without
Deep Understanding. In Proc. of the 53rd Annual Meeting of the Association for
Computational Linguistics, ACL 2015.

[48] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159–174.

[49] Gierad P. Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem Agar-
wala, Jason Linder, and Eytan Adar. 2013. PixelTone: A Multimodal Interface for
Image Editing. In Proc. of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, 2185–2194.

[50] Tessa Lau, Julian Cerruti, GuillermoManzato, Mateo Bengualid, Jeffrey P. Bigham,
and Jeffrey Nichols. 2010. A Conversational Interface to Web Automation. In Proc.
of the 23Nd Annual ACM Symposium on User Interface Software and Technology
(UIST ’10). ACM, 229–238. https://doi.org/10.1145/1866029.1866067

[51] Oliver Lemon, Kallirroi Georgila, James Henderson, and Matthew Stuttle. 2006.
An ISU Dialogue System Exhibiting Reinforcement Learning of Dialogue Policies:
Generic Slot-filling in the TALK In-car System. In Proc. of the 11th Conference
of the European Chapter of the Association for Computational Linguistics: Posters

108

http://botscrew.com/
https://doi.org/10.1145/2785830.2785892
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/designing-for-voice/what-users-say/
https://developer.amazon.com/designing-for-voice/what-users-say/
https://aws.amazon.com/lex/
https://developer.android.com/topic/libraries/support-library/index.html
https://developer.android.com/topic/libraries/support-library/index.html
https://www.appsee.com/
http://dl.acm.org/citation.cfm?id=2892753.2892959
http://arxiv.org/abs/1605.07683
http://www.businessinsider.com/amazon-alexa-how-many-skills-chart-2017-7
http://www.businessinsider.com/amazon-alexa-how-many-skills-chart-2017-7
https://doi.org/10.1145/3173574.3174029
http://arxiv.org/abs/1412.3555
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126647
https://doi.org/10.1145/2984511.2984581
https://dialogflow.com/
https://dialogflow.com/
http://arxiv.org/abs/1511.06931
http://aclweb.org/anthology/P17-1123
http://aclweb.org/anthology/P17-1123
https://wit.ai/
https://y.flurry.com/
http://arxiv.org/abs/1702.01932
http://arxiv.org/abs/1702.01932
https://github.com/alexa-js/alexa-utterances
https://github.com/alexa-js/alexa-utterances
https://lab.miguelmota.com/intent-utterance-expander/example/
https://lab.miguelmota.com/intent-utterance-expander/example/
https://github.com/miguelmota/intent-utterance-generator
https://github.com/miguelmota/intent-utterance-generator
https://gizmodo.com/facebook-messenger-chatbots
https://gizmodo.com/facebook-messenger-chatbots
-are-more-frustrating-than-h-1770732045
https://gizmodo.com/the-amazon-
echo-now-has-10-000-mostly-useless-skills-179269536
https://developers.google.com/actions/
https://analytics.google.com/
https://doi.org/10.1145/2493432.2493458
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/2594368.2594390
https://www.ibm.com/watson/developer/
https://web.stanford.edu/~jurafsky/slp3/29.pdf
https://web.stanford.edu/~jurafsky/slp3/29.pdf
http://aclweb.org/anthology/W15-4661
http://aclweb.org/anthology/W15-4661
http://dl.acm.org/citation.cfm?id=1557769.1557821
https://doi.org/10.1145/1866029.1866067

MobiSys ’18, June 10–15, 2018, Munich, Germany Toby Jia-Jun Li and Oriana Riva

& Demonstrations (EACL ’06). Association for Computational Linguistics,
119–122.

[52] Jiwei Li, Michel Galley, Chris Brockett, Georgios Spithourakis, Jianfeng Gao, and
Bill Dolan. 2016. A Persona-Based Neural Conversation Model. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, 994–1003. https:
//doi.org/10.18653/v1/P16-1094

[53] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky.
2016. Deep Reinforcement Learning for Dialogue Generation. In In Proc. of
EMNLP.

[54] Jiwei Li,Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky. 2017. Adversarial
Learning for Neural Dialogue Generation. In In Proc. of EMNLP.

[55] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proc. of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI ’17). ACM, 6038–6049.

[56] Toby Jia-Jun Li, Igor Labutov, Brad A. Myers, Amos Azaria, Alexander I. Rudnicky,
and Tom M. Mitchell. 2018. An End User Development Approach for Failure
Handling in Goal-oriented Conversational Agents. In Studies in Conversational
UX Design. Springer.

[57] Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and Brad A. Myers. 2017. Program-
ming IoT Devices by Demonstration UsingMobile Apps. In End-User Development,
Simone Barbosa, Panos Markopoulos, Fabio Paternò, Simone Stumpf, and Stefano
Valtolina (Eds.). Springer International Publishing, Cham, 3–17.

[58] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In Proc. of the 39th
International Conference on Software Engineering Companion. IEEE Press, 23–26.

[59] Localytics. 2017. http://www.localytics.com/.
[60] Microsoft. 2017. Bot framework. https://dev.botframework.com/.
[61] Microsoft - Cognitive Services. 2017. Language Understanding Intelligent Service.

https://www.luis.ai.
[62] Ruslan Mitkov and Le An Ha. 2003. Computer-aided Generation of Multiple-

choice Tests. In Proc. of the HLT-NAACL 03 Workshop on Building Educational
Applications Using Natural Language Processing - Volume 2 (HLT-NAACL-EDUC
’03). Association for Computational Linguistics, 17–22. https://doi.org/10.3115/
1118894.1118897

[63] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proc. of the
40th Annual Meeting on Association for Computational Linguistics (ACL ’02).
Association for Computational Linguistics, Stroudsburg, PA, USA, 311–318.
https://doi.org/10.3115/1073083.1073135

[64] Ranker. 2017. Coffee Shop Chains That Make Mornings Bearable. https://www.
ranker.com/list/best-coffee-shop-chains/chef-jen.

[65] Alan Ritter, Colin Cherry, and William B. Dolan. 2011. Data-driven response
generation in social media. In Proc. of EMNLP. Association for Computational
Linguistics, 583–593.

[66] Search Engine Roundtable. 2017. Google: Chatbots Don’t Make Your Pages Better.
https://www.seroundtable.com/google-on-chatbots-seo-24494.html.

[67] Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean, Svetlana Stoyanchev,
and Cristian Moldovan. 2010. The First Question Generation Shared Task Eval-
uation Challenge. In Proc. of the 6th International Natural Language Genera-
tion Conference (INLG ’10). Association for Computational Linguistics, 251–257.
http://dl.acm.org/citation.cfm?id=1873738.1873777

[68] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin
Schmidt, and Hansjörg Schmauder. 2013. Insights into Layout Patterns of Mobile
User Interfaces by an Automatic Analysis of Android Apps. In Proc. of the 5th
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS
’13). ACM, 275–284. https://doi.org/10.1145/2494603.2480308

[69] Iulian Vlad Serban, Alberto García-Durán, Çaglar Gülçehre, Sungjin Ahn, Sarath
Chandar, Aaron C. Courville, and Yoshua Bengio. 2016. Generating Factoid
Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer
Corpus. In Proc. of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016. http://aclweb.org/anthology/P/P16/P16-1056.pdf

[70] Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle
Pineau. 2016. Building End-to-end Dialogue Systems Using Generative Hierar-
chical Neural Network Models. In Proc. of the 30th AAAI Conference on Artificial
Intelligence (AAAI’16). AAAI Press, 3776–3783.

[71] Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural Responding Machine
for Short-Text Conversation. In Proc. of ACL. 1577–1586.

[72] Northwoods Software. 2017. GoJS Diagrams for JavaScript and HTML. https:
//gojs.net/

[73] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji,
Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015. A Neural
Network Approach to Context-Sensitive Generation of Conversational Responses.
In Proc. of NAACL-HLT. 196–205.

[74] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Proc. of NIPS. Montreal, CA. http://arxiv.org/
abs/1409.3215

[75] TechCrunch. 201. Kik users have exchanged over 1.8 billion messages
with the platform’s 20,000 chatbots. https://techcrunch.com/2016/
08/03/kik-users-have-exchanged-over-1-8-billion-messages-with-the
-platforms-20000-chatbots.

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv:1706.03762 [cs] (June 2017). http://arxiv.org/abs/1706.03762
arXiv: 1706.03762.

[77] Venture Beat. 2017. One year later, here’s the state of
the chatbot economy. https://venturebeat.com/2017/06/11/
one-year-later-heres-the-state-of-the-chatbot-economy.

[78] Oriol Vinyals and Quoc V. Le. 2015. A Neural Conversational Model. In Proc. of
ICML Deep Learning Workshop.

[79] Hao Wang, Zhengdong Lu, Hang Li, and Enhong Chen. 2013. A Dataset for
Research on Short-Text Conversations. In Proc. of the 2013 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics, 935–945.

[80] Zhuoran Wang and Oliver Lemon. 2013. A Simple and Generic Belief Tracking
Mechanism for the Dialog State Tracking Challenge: On the believability of
observed information. In Proc. of the SIGDIAL 2013 Conference. Association for
Computational Linguistics, 423–432.

[81] Wayne Ward and Sunil Issar. 1994. Recent Improvements in the CMU Spoken
Language Understanding System. In Proc. of the Workshop on Human Language
Technology (HLT ’94). Association for Computational Linguistics, 213–216.

[82] Joseph Weizenbaum. 1966. ELIZA—a Computer Program for the Study of Natural
Language Communication Between Man and Machine. Commun. ACM 9, 1 (Jan.
1966), 36–45. https://doi.org/10.1145/365153.365168

[83] Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017. Crowdsourcing Multiple
Choice Science Questions. CoRR abs/1707.06209 (2017). http://arxiv.org/abs/
1707.06209

[84] Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola Mrkšić, Pei-Hao Su, David
Vandyke, and Steve Young. 2015. Stochastic Language Generation in Dialogue
using Recurrent Neural Networks with Convolutional Sentence Reranking. In
Proc. of the 16th Annual Meeting of the Special Interest Group on Discourse and
Dialogue (SIGDIAL). Association for Computational Linguistics.

[85] Jason D. Williams, Kavosh Asadi, and Geoffrey Zweig. 2017. Hybrid Code Net-
works: practical and efficient end-to-end dialog control with supervised and
reinforcement learning. In Proc. of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL 2017).

[86] Xingdi Yuan, Tong Wang, Çaglar Gülçehre, Alessandro Sordoni, Philip Bachman,
Sandeep Subramanian, Saizheng Zhang, and Adam Trischler. 2017. Machine Com-
prehension by Text-to-Text Neural Question Generation. CoRR abs/1705.02012
(2017). http://arxiv.org/abs/1705.02012

[87] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou.
2017. Neural Question Generation from Text: A Preliminary Study. CoRR
abs/1704.01792 (2017). http://arxiv.org/abs/1704.01792

109

https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.18653/v1/P16-1094
http://www.localytics.com/
https://dev.botframework.com/
https://www.luis.ai
https://doi.org/10.3115/1118894.1118897
https://doi.org/10.3115/1118894.1118897
https://doi.org/10.3115/1073083.1073135
https://www.ranker.com/list/best-coffee-shop-chains/chef-jen
https://www.ranker.com/list/best-coffee-shop-chains/chef-jen
https://www.seroundtable.com/google-on-chatbots-seo-24494.html
http://dl.acm.org/citation.cfm?id=1873738.1873777
https://doi.org/10.1145/2494603.2480308
http://aclweb.org/anthology/P/P16/P16-1056.pdf
https://gojs.net/
https://gojs.net/
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://techcrunch.com/2016/08/03/kik-users-have-exchanged-over-1-8-billion-messages-with-the
https://techcrunch.com/2016/08/03/kik-users-have-exchanged-over-1-8-billion-messages-with-the
-platforms-20000-chatbots
http://arxiv.org/abs/1706.03762
https://venturebeat.com/2017/06/11/one-year-later-heres-the-state-of-the-chatbot-economy
https://venturebeat.com/2017/06/11/one-year-later-heres-the-state-of-the-chatbot-economy
https://doi.org/10.1145/365153.365168
http://arxiv.org/abs/1707.06209
http://arxiv.org/abs/1707.06209
http://arxiv.org/abs/1705.02012
http://arxiv.org/abs/1704.01792

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Bot building process
	2.2 Goals and overview

	3 System Design
	3.1 Task model extraction
	3.2 Question and answer generation

	4 Implementation
	5 Evaluation
	5.1 Accuracy of task models
	5.2 Question/answer relevance and quality
	5.3 Developer study

	6 Related Work
	7 Limitations
	8 Conclusions
	Acknowledgments
	References

