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Abstract

We show SUGILITE, an intelligent task au-
tomation agent that can learn new tasks and
relevant associated concepts interactively from
the user’s natural language instructions and
demonstrations, using the graphical user inter-
faces (GUIs) of third-party mobile apps. This
system provides several interesting features:
(1) it allows users to teach new task proce-
dures and concepts through verbal instructions
together with demonstration of the steps of a
script using GUIs; (2) it supports users in clari-
fying their intents for demonstrated actions us-
ing GUI-grounded verbal instructions; (3) it in-
fers parameters of tasks and their possible val-
ues in utterances using the hierarchical struc-
tures of the underlying app GUIs; and (4) it
generalizes taught concepts to different con-
texts and task domains. We describe the archi-
tecture of the SUGILITE system, explain the
design and implementation of its key features,
and show a prototype in the form of a conver-
sational assistant on Android.

1 Introduction

Interactive task learning (ITL) is an emerging
research topic that focuses on enabling task
automation agents to learn new tasks and their
corresponding relevant concepts through natural
interaction with human users (Laird et al., 2017).
This topic is also known as end user development
(EUD) for task automation (Ko et al., 2011; Myers
et al., 2017). Work in this domain includes both
physical agents (e.g., robots) that learn tasks that
might involve sensing and manipulating objects
in the real world (Chai et al., 2018; Argall et al.,
2009), as well as software agents that learn how to
perform tasks through software interfaces (Azaria
et al., 2016; Allen et al., 2007; Labutov et al.,
2018; Leshed et al., 2008). This paper focuses on
the latter category.

A particularly useful application of ITL is for
conversational virtual assistants (e.g., Apple Siri,
Google Assistant, Amazon Alexa). These systems
have been widely adopted by end users to perform
tasks in a variety of domains through natural lan-
guage conversation. However, a key limitation
of these systems is that their task fulfillment and
language understanding capabilities are limited to
a small set of pre-programmed tasks (Li et al.,
2018b; Labutov et al., 2018). This limited support
is not adequate for the diverse “long-tail” of user
needs and preferences (Li et al., 2017a). Although
some software agents provide APIs to enable third-
party developers to develop new “skills” for them,
this requires significant programming expertise and
relevant APIs, and therefore is not usable by the
vast majority of end users.

Natural language instructions play a key role in
some ITL systems for virtual assistants, because
this modality represents an natural way for humans
to teach new tasks (often to other humans), and
has a low learning barrier compared to existing tex-
tual or visual programming languages for task au-
tomation. Some prior systems (Azaria et al., 2016;
Labutov et al., 2018; Le et al., 2013; Srivastava
et al., 2017, 2018) relied solely natural language
instruction, while others (Allen et al., 2007; Kirk
and Laird, 2019; Sereshkeh et al., 2020) also used
demonstrations of direct manipulations to supple-
ment the natural language instructions. We sur-
veyed the prior work, and identified the following
five key design challenges:

1. Usability: The system should be usable for
users without significant programming exper-
tise. It should be easy and intuitive to use with
a low learning barrier. This requires careful
design of the dialog flow to best match the
user’s natural model of task instruction.

2. Applicability: The system should handle a



Figure 1: An example dialog structure while SUGILITE learns a new task that contains a conditional and new con-
cepts. The numbers indicate the sequence of the utterances. The screenshot on the right shows the conversational
interface during these steps.

wide range of common and long-tail tasks
across different domains. Many existing sys-
tems can only work with pre-specified task
domains (Labutov et al., 2018; Azaria et al.,
2016; Gulwani and Marron, 2014), or services
that provide open API access to their function-
alities (Campagna et al., 2017; Le et al., 2013).
This limits the applicability of those systems
to a smaller subset of tasks.

The same problem also applies to the language
understanding capability of the system. It
should be able to understand, ground, and act
upon instructions in different task domains
(e.g., different phone apps) without requiring
pre-built parsers for each domain.

3. Generalizability: The system should learn
generalized procedures and concepts to handle
new task contexts that go beyond the example
context used for instruction. This includes
inferring parameters of tasks, allowing the use
of different parameter values, and adapting
learned concepts to new task domains.

4. Flexibility: The system should be sufficiently
expressive to allow users to specify flexible
rules, conditions, and other control structures
that reflect their intentions.

5. Robustness: The system should be resilient
to minor changes in target applications, and
be able to recover from errors caused by pre-
viously unseen or unexpected situations, pos-
sibly with some help from the user.

To address these challenges, we present the
prototype of a new task automation agent named
SUGILITE12. This prototype integrates and im-
plements the results from several of our prior re-
search works (Li et al., 2017a, 2018a, 2017b; Li
and Riva, 2018; Li et al., 2019), and we are cur-
rent preparing for a field deployment study with
this prototype. The implementation of our system
is also open-sourced on GitHub3. The high-level
approach used in SUGILITE is to combine conver-
sational natural language instructions with demon-
strations on mobile app GUIs, and to use each of
the two modalities to disambiguate, ground, and
supplement the user’s inputs from the other modal-
ity through mixed-initiative interactions.

2 System Overview

This section explains how SUGILITE learns new
tasks and concepts from the multi-modal interactive
instructions from the users.

The user starts with speaking a command. The
command can describe either an action (e.g.,
“check the weather”) or an automation rule with
a condition (e.g., “If it is hot, order a cup of
Iced Cappuccino”). Suppose that the agent has
no prior knowledge in any of the involved task

1Sugilite is a gemstone, and here stands for Smartphone
Users Generating Intelligent Likeable Interfaces Through
Examples.

2A demo video is available at https://www.youtube.com/
watch?v=tdHEk-GeaqE

3https://github.com/tobyli/Sugilite development

https://www.youtube.com/watch?v=tdHEk-GeaqE
https://www.youtube.com/watch?v=tdHEk-GeaqE
https://github.com/tobyli/Sugilite_development


Figure 2: The screenshots of SUGILITE’s demonstration mechanism and its multi-modal mixed-initiative intent
clarification process for the demonstrated actions.

domains, then it will recursively resolve the un-
known concepts and procedures used in the com-
mand. Although it does not know these con-
cepts, it can recognize the structure of the com-
mand (e.g., conditional), and parse each part
of the command into the corresponding typed
resolve functions, as shown in Figure 1. SUG-
ILITE uses a grammar-based executable semantic
parsing architecture (Liang, 2016); therefore its
conversation flow operates on the recursive ex-
ecution of the resolve functions. Since the
resolve functions are typed, the agent can gen-
erate prompts based on their types (e.g., “How do I
tell whether. . . ” for resolveBool and “How do
I find out the value for. . . ” for resolveValue).

When the SUGILITE agent reaches the
resolve function for a value query or a proce-
dure, it asks the users if they can demonstrate
them. The users can then demonstrate how they
would normally look up the value, or perform the
procedure manually with existing mobile apps
on the phone by direct manipulation (Figure 2a).
For any ambiguous demonstrated action, the user
verbally explains the intent behind the action
through multi-turn conversations with the help
from an interaction proxy overlay that guides the
user to focus on providing more effective input (see
Figure 2bcde, more details in Section 3.2). When
the user demonstrates a value query (e.g., finding
out the value of the temperature), SUGILITE

highlights the GUI elements showing values with
the compatible types (see Figure 3) to assist the
user in finding the appropriate GUI element during

the demonstration.
All user-instructed value concepts, Boolean con-

cepts, and procedures automatically get generalized
by SUGILITE. The procedures are parameterized
so that they can be reused with different parameter
values in the future. For example, for Utterance
8 in Figure 1, the user does not need to demon-
strate again since the system can invoke the newly-
learned order Starbucks function with a dif-
ferent parameter value (details in Section 3.3). The
learned concepts and value queries are also gener-
alized so that the system recognizes the different
definitions of concepts like “hot” and value queries
like “temperature” in different contexts (details in
Section 3.4).

3 Key Features

3.1 Using Demonstrations in Natural
Language Instructions

SUGILITE allows users to use demonstrations to
teach the agent any unknown procedures and con-
cepts in their natural language instructions. As
discussed earlier, a major challenge in ITL is that
understanding natural language instructions and
carrying out the tasks accordingly require having
knowledge in the specific task domains. Our use
of programming by demonstration (PBD) is an ef-
fective way to address this “out-of-domain” prob-
lem in both the task-fulfillment and the natural lan-
guage understanding processes (Li et al., 2018b).
In SUGILITE, procedural actions are represented as
sequences of GUI operations, and declarative con-



Figure 3: The user teaches the value concept “commute
time” by demonstrating querying the value in Google
Maps. SUGILITE highlights all the duration values on
the Google Maps GUI.

cepts can be represented as references to GUI con-
tents. This approach supports ITL for a wide range
of tasks – virtually anything that can be performed
with one or more existing third-party mobile apps.

Our prior study (Li et al., 2019) also found that
the availability of app GUI references can result in
end users providing clearer natural language com-
mands. In one study where we asked participants to
instruct an intelligent agent to complete everyday
computing tasks in natural language, the partici-
pants who saw screenshots of relevant apps used
fewer unclear, vague, or ambiguous concepts in
their verbal instructions than those who did not see
the screenshots. Details of the study design and the
results can be found in Li et al. (2019).

3.2 Spoken Intent Clarification for
Demonstrated Actions

A major limitation of demonstrations is that they
are too literal, and are therefore brittle to any
changes in the task context. They encapsulate what
the user did, but not why the user did it. When
the context changes, the agent often may not know
what to do, due to this lack of understanding of
the user intents behind their demonstrated actions.
This is known as the data description problem in
the PBD community, and it is regarded as a key
problem in PBD research (Cypher and Halbert,
1993; Lieberman, 2001). For example, just look-
ing at the action shown in Figure 2a, one cannot
tell if the user meant “the restaurant with the most

reviews”, “the promoted restaurant”, “the restau-
rant with 1,000 bonus points”, “the cheapest Steak-
house”, or any other criteria, so the system cannot
generate a description for this action that accurately
reflects the user’s intent. A prior approach is to ask
for multiple examples from the users (McDaniel
and Myers, 1999), but this is often not feasible due
to the user’s inability to come up with useful and
complete examples, and the amount of examples
required for complex tasks (Myers and McDaniel,
2001; Lee et al., 2017).

SUGILITE’s approach is to ask users to verbally
explain their intent for the demonstrated actions us-
ing speech. Our formative study (Li et al., 2018a)
found that end users were able to provide useful
and generalizable explanations for the intents of
their demonstrated actions. They also commonly
used in their utterances semantic references to GUI
contents (e.g., ”the close by restaurant” for an entry
showing the text “596 ft”) and implicit spatial refer-
ences (e.g., “the score for Lakers” for a text object
that contains a numeric value and is right-aligned
to another text object “Lakers”).

Based on these findings, we designed and im-
plemented a multi-modal mixed-initiative intent
clarification mechanism for demonstrated actions.
As shown in Figure 2, the user describes their in-
tention in natural language, and iteratively refines
the descriptions to remove ambiguity with the help
of an interactive overlay (Figure 2d). The over-
lay highlights the result from executing the current
data description query, and helps the user focus on
explaining the key differences between the target
object (highlighted in red) and the false positives
(highlighted in yellow) of the query.

To ground the user’s natural language explana-
tions about GUI elements, SUGILITE represents
each GUI screen as a UI snapshot graph. This
graph captures the GUI elements’ text labels, meta-
information (including screen position, type, and
package name), and the spatial (e.g., nextTo),
hierarchical (e.g., hasChild), and semantic rela-
tions (e.g., containsPrice) among them (Fig-
ure 4). A semantic parser translates the user’s expla-
nation into a graph query on the UI snapshot graph,
executes it on the graph, and verifies if the result
matches the correct entity that the user originally
demonstrated. The goal of this process is to gener-
ate a query that uniquely matches the target UI ele-
ment and also reflects the user’s underlying intent.

Our semantic parser uses a Floating Parser ar-



Figure 4: SUGILITE’s instruction parsing and ground-
ing process for intent clarifications illustrated on an ex-
ample UI snapshot graph constructed from a simplified
GUI snippet.

chitecture (Pasupat and Liang, 2015) and is imple-
mented with the SEMPRE framework (Berant et al.,
2013). We represent UI snapshot graph queries in
a simple but flexible LISP-like query language (S-
expressions) that can represent joins, conjunctions,
superlatives and their compositions, constructed by
the following 7 grammar rules:

E → e;E → S;S → (join r E);S → (and S S)

T → (ARG MAX r S);T → (ARG MIN r S);Q → S | T

where Q is the root non-terminal of the query ex-
pression, e is a terminal that represents a UI object
entity, r is a terminal that represents a relation,
and the rest of the non-terminals are used for inter-
mediate derivations. SUGILITE’s language forms
a subset of a more general formalism known as
Lambda Dependency-based Compositional Seman-
tics (Liang et al., 2013), which is a notationally
simpler alternative to lambda calculus which is par-
ticularly well-suited for expressing queries over
knowledge graphs. More technical details and the
user evaluation are discussed in Li et al. (2018a).

3.3 Task Parameterization through GUI
Grounding

Another way SUGILITE leverages GUI groundings
in the natural language instructions is to infer task
parameters and their possible values. This allows
the agent to learn generalized procedures (e.g., to
order any kind of beverage from Starbucks) from

a demonstration of a specific instance of the task
(e.g., ordering an iced cappuccino).

SUGILITE achieves this by comparing the user
utterance (e.g., “order a cup of iced cappuccino”)
against the data descriptions of the target UI ele-
ments (e.g., click on the menu item that has the
text “Iced Cappuccino”) and the arguments (e.g.,
put “Iced Cappuccino” into a search box) of the
demonstrated actions for matches. This process
grounds different parts in the utterances to specific
actions in the demonstrated procedure. It then ana-
lyzes the hierarchical structure of GUI at the time
of demonstration, and looks for alternative GUI ele-
ments that are in parallel to the original target GUI
element structurally. In this way, it extracts the
other possible values for the identified parameter,
such as the names of all the other drinks displayed
in the same menu as “Iced Cappuccino”

The extracted sets of possible parameter values
are also used for disambiguating the procedures to
invoke, such as invoking the order Starbucks
procedure for the command “order a cup of latte”,
but invoking the order PapaJohns procedure
for the command “order a cheese pizza.”

3.4 Generalizing the Learned Concepts

In addition to the procedures, SUGILITE also auto-
matically generalizes the learned concepts in order
to reuse parts of existing concepts as much as pos-
sible to avoid requiring users to perform redundant
demonstrations (Li et al., 2019).

For Boolean concepts, SUGILITE assumes
that the Boolean operation and the types of the
arguments stay the same, but the arguments
themselves may differ. For example, the concept
“hot” used in Figure 1 can be generalize to “arg0
is greater than arg1” where arg0 and arg1
can be value queries or constant values of the
temperature type. This allows the various constant
thresholds of temperature, or dynamic queries
for temperatures depending on the specific task
context. This mechanism allows concepts to be
used across different contexts (e.g., determining
whether to order iced coffee vs. whether to open
the window) task domains (e.g., “the weather is
hot” vs. “the oven is hot”).

Similarly, named value queries (resolved from
resolveValue such as “temperature” in Fig-
ure 1) can be generalized to have different imple-
mentations depending on the task domain. In “the
temperature outside”, query Temperature()



can invoke the weather app, whereas in “the temper-
ature of the oven” it can invoke the smart oven app
to look up the current temperature of the oven (Li
et al., 2017b).

4 Evaluation

We conducted several lab user studies to evaluate
the usability, efficiency and effectiveness of SUG-
ILITE. The results of these study showed that end
users without significant programming expertise
were able to successfully teach the agent the proce-
dures of performing common tasks (e.g., ordering
pizza, requesting Uber, checking sports score, or-
dering coffee) (Li et al., 2017a), conditional rules
for triggering the tasks (Li et al., 2019), and con-
cepts relevant to the tasks (e.g., the weather is hot,
the traffic is heavy) (Li et al., 2019) using SUG-
ILITE. The users were also able to clarify their
intents when ambiguities arise (Li et al., 2018a).
Most of our participants found SUGILITE easy and
natural to use (Li et al., 2017a, 2018a, 2019). Effi-
ciency wise, teaching a task usually took the user
3–6 times longer than how long it took to perform
the task manually in our studies (Li et al., 2017a),
which indicates that teaching a task using SUG-
ILITE can save time for many repetitive tasks.

5 Discussion and Future Work

5.1 Using GUIs for Language Grounding
SUGILITE illustrates the great promise of using
GUIs as a resource for grounding and understand-
ing natural language instructions in ITL. The GUIs
encapsulate rich knowledge about the flows of the
underlying tasks and the properties and relations of
relevant entities, so they can be used to bootstrap
the domain-specific knowledge needed by ITL
systems that rely on natural language instructions
for learning. Users are also familiar with GUIs,
which makes GUIs the ideal medium to which
users can refer during task instructions. A major
challenge in natural language instruction is that
the users do not know what concepts or knowledge
the agent already knows so that they can use it
in their instructions (Li et al., 2019). Therefore,
they often introduce additional unknown concepts
that are either unnecessary or entirely beyond
the capability of the agent (e.g., explaining “hot”
as “when I’m sweating” when teaching the agent
to “open the window when it is hot”). By using
the app GUIs as the medium, the system can
effectively constrain the users to refer to things

that can be found out from some app GUIs (e.g.,
“hot” can mean “the temperature is high”), which
mostly overlaps with the “capability ceiling” of
smartphone-based agents, and allows the users to
define new concepts for the agent by referring to
app GUIs (Li et al., 2017a, 2019).

5.2 More Robust Natural Language
Understanding

The current version of SUGILITE uses a grammar-
based executable semantic parser to understand the
users’ natural language explanations of their intents
for the demonstrated actions. While this approach
comes with many benefits, such as only requiring
a small amount of training data and not relying on
any domain knowledge, it has rigid patterns and
therefore sometimes encounters problems with the
flexible structures and varied expressions in the
user utterances.

We are looking at alternative approaches for pars-
ing natural language instructions into our domain-
specific language (DSL) for representing data de-
scription queries and task execution procedures.
A promising strategy is to take advantage of the
abstract syntax tree (AST) structure in our DSL
for constructing a neural parser (Xu et al., 2020;
Yin and Neubig, 2017), which reduces the amount
of training data needed and enforces the well-
formedness of the output code.

The current model also only uses the semantic
information from the local user instructions and
their corresponding app GUIs. Another promising
approach to enable more robust natural language
understanding is to leverage the pre-trained general-
purpose language models (e.g., BERT (Devlin et al.,
2018)) to encode the user instructions and the in-
formation extracted from app GUIs.

5.3 Extracting Task Semantics from GUIs
An interesting future direction is to better extract
semantics from app GUIs so that the user can focus
on high-level task specifications and personal pref-
erences without dealing with low-level mundane
details (e.g., “buy 2 burgers” means setting the
value of the textbox below the text “quantity” and
next to the text “Burger” to be “2”). Some works
have made early progress in this domain (Liu et al.,
2018b; Deka et al., 2016; Chen et al., 2020) thanks
to the availability of large datasets of GUIs like
RICO (Deka et al., 2017). Recent reinforcement
learning-based approaches and semantic parsing
techniques have also shown promising results in



learning models for navigating through GUIs for
user-specified task objectives (Liu et al., 2018a;
Pasupat et al., 2018). For ITL, an interesting fu-
ture challenge is to combine these user-independent
domain-agnostic machine-learned models with the
user’s personalized instructions for a specific task.
This will likely require a new kind of mixed-
initiative instruction (Horvitz, 1999) where the
agent is more proactive in guiding the user and
takes more initiative in the dialog. This could be
supported by improved background knowledge and
task models, and more flexible dialog frameworks
that can handle the continuous refinement and un-
certainty inherent in natural language interaction,
and the variations in user goals. Collecting and
aggregating personal task instructions across many
users also introduce important concerns on user
privacy, as discussed in (Li et al., 2020).

5.4 Multi-Modal Interactions in
Conversational Learning

SUGILITE combines speech and direct manipu-
lation to enable a “speak and point” interaction
style, which has been studied since early inter-
active systems like Put-That-There (Bolt, 1980).
As described in Section 3.2, a key pattern used in
SUGILITE’s multi-modal interface is mutual dis-
ambiguation (Oviatt, 1999) where it utilizes inputs
in complementary modalities to infer robust and
generalizable scripts that can accurately represent
user intentions.

We are currently exploring other ways of using
multi-modal interactions to supplement natural lan-
guage instructions in ITL. A promising direction
is to use GUI references to help with repairing
conversational breakdowns (Beneteau et al., 2019;
Ashktorab et al., 2019; Myers et al., 2018) caused
by incorrect semantic parsing, intent classification,
or entity recognition. Since GUIs encapsulate rich
semantic information about the users’ intents, the
task flows, and the task constraints, we can poten-
tially ask the users to point to the relevant GUI
screens as a part of the error handling process, ex-
plaining the errors with references to the GUIs, and
helping the system recover from the breakdowns.

6 Conclusion

We described SUGILITE, a task automation agent
that can learn new tasks and relevant concepts in-
teractively from users through their GUI-grounded
natural language instructions and demonstrations.

This system provides capabilities such as intent
clarification, task parameterization, and concept
generalization. SUGILITE shows the promise of
using app GUIs for grounding natural language
instructions, and the effectiveness of resolving un-
known concepts, ambiguities, and vagueness in nat-
ural language instructions using a mixed-initiative
multi-modal approach.
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